A Generalization of Pascal's Hexagon Theorem to Real Hilbert Spaces
Journal for geometry and graphics, Tome 24 (2020) no. 1, pp. 1-7
Cet article a éte moissonné depuis la source Heldermann Verlag
We present a generalization of the classical Pascal Hexagon Theorem to real Hilbert spaces. The key ingredient is a Cone Lemma which allows a reformulation of the problem in terms of vertices of cones with spherical cross-section bases.
Classification :
46C05, 51A20
Mots-clés : Pascal's hexagon theorem, Hilbert space, linear variety, cone
Mots-clés : Pascal's hexagon theorem, Hilbert space, linear variety, cone
@article{JGG_2020_24_1_JGG_2020_24_1_a0,
author = {N. Anghel },
title = {A {Generalization} of {Pascal's} {Hexagon} {Theorem} to {Real} {Hilbert} {Spaces}},
journal = {Journal for geometry and graphics},
pages = {1--7},
year = {2020},
volume = {24},
number = {1},
url = {http://geodesic.mathdoc.fr/item/JGG_2020_24_1_JGG_2020_24_1_a0/}
}
N. Anghel . A Generalization of Pascal's Hexagon Theorem to Real Hilbert Spaces. Journal for geometry and graphics, Tome 24 (2020) no. 1, pp. 1-7. http://geodesic.mathdoc.fr/item/JGG_2020_24_1_JGG_2020_24_1_a0/