A Generalization of Pascal's Hexagon Theorem to Real Hilbert Spaces
Journal for geometry and graphics, Tome 24 (2020) no. 1, pp. 1-7.

Voir la notice de l'article provenant de la source Heldermann Verlag

We present a generalization of the classical Pascal Hexagon Theorem to real Hilbert spaces. The key ingredient is a Cone Lemma which allows a reformulation of the problem in terms of vertices of cones with spherical cross-section bases.
Classification : 46C05, 51A20
Mots-clés : Pascal's hexagon theorem, Hilbert space, linear variety, cone
@article{JGG_2020_24_1_JGG_2020_24_1_a0,
     author = {N. Anghel },
     title = {A {Generalization} of {Pascal's} {Hexagon} {Theorem} to {Real} {Hilbert} {Spaces}},
     journal = {Journal for geometry and graphics},
     pages = {1--7},
     publisher = {mathdoc},
     volume = {24},
     number = {1},
     year = {2020},
     url = {http://geodesic.mathdoc.fr/item/JGG_2020_24_1_JGG_2020_24_1_a0/}
}
TY  - JOUR
AU  - N. Anghel 
TI  - A Generalization of Pascal's Hexagon Theorem to Real Hilbert Spaces
JO  - Journal for geometry and graphics
PY  - 2020
SP  - 1
EP  - 7
VL  - 24
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JGG_2020_24_1_JGG_2020_24_1_a0/
ID  - JGG_2020_24_1_JGG_2020_24_1_a0
ER  - 
%0 Journal Article
%A N. Anghel 
%T A Generalization of Pascal's Hexagon Theorem to Real Hilbert Spaces
%J Journal for geometry and graphics
%D 2020
%P 1-7
%V 24
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JGG_2020_24_1_JGG_2020_24_1_a0/
%F JGG_2020_24_1_JGG_2020_24_1_a0
N. Anghel . A Generalization of Pascal's Hexagon Theorem to Real Hilbert Spaces. Journal for geometry and graphics, Tome 24 (2020) no. 1, pp. 1-7. http://geodesic.mathdoc.fr/item/JGG_2020_24_1_JGG_2020_24_1_a0/