Generalization of the Pappus Theorem in the Plane and in Space
Journal for geometry and graphics, Tome 22 (2018) no. 1, pp. 59-66
Cet article a éte moissonné depuis la source Heldermann Verlag
One of the Pappus theorems states that if points F, E, D divide the sides of triangle ABC in the same ratio α, then the triangles ABC and FED have the same centroid. Therefore, the intersection Q of such triangles FED obtained for all non-negative α, is not empty. In this paper we will characterize the domain Q for the general case of dividing the sides of a triangle (not necessary in the same ratio) and prove that Q is bound by conic sections. We will also present some surprising results concerning Q for the case of a tetrahedron.
Classification :
51M05
Mots-clés : Pappus Theorem, triangle, tetrahedron, conic sections
Mots-clés : Pappus Theorem, triangle, tetrahedron, conic sections
@article{JGG_2018_22_1_JGG_2018_22_1_a6,
author = {V. Oxman and A. Sigler and M. Stupel },
title = {Generalization of the {Pappus} {Theorem} in the {Plane} and in {Space}},
journal = {Journal for geometry and graphics},
pages = {59--66},
year = {2018},
volume = {22},
number = {1},
url = {http://geodesic.mathdoc.fr/item/JGG_2018_22_1_JGG_2018_22_1_a6/}
}
TY - JOUR AU - V. Oxman AU - A. Sigler AU - M. Stupel TI - Generalization of the Pappus Theorem in the Plane and in Space JO - Journal for geometry and graphics PY - 2018 SP - 59 EP - 66 VL - 22 IS - 1 UR - http://geodesic.mathdoc.fr/item/JGG_2018_22_1_JGG_2018_22_1_a6/ ID - JGG_2018_22_1_JGG_2018_22_1_a6 ER -
V. Oxman; A. Sigler; M. Stupel . Generalization of the Pappus Theorem in the Plane and in Space. Journal for geometry and graphics, Tome 22 (2018) no. 1, pp. 59-66. http://geodesic.mathdoc.fr/item/JGG_2018_22_1_JGG_2018_22_1_a6/