Rotor Coordinates and Vector Trigonometry
Journal for geometry and graphics, Tome 21 (2017) no. 1, pp. 89-106.

Voir la notice de l'article provenant de la source Heldermann Verlag

Rational trigonometry is a purely algebraic approach to trigonometry which uses quadrance and spread instead of distance and angle for metrical measurements. In this paper we introduce a variant called vector trigonometry, which is useful for planar applied engineering problems where vector quantities are involved. We derive basic trigonometric laws involving rotor coordinates of length and half-slope.
Classification : 51N20, 70A05, 97G60
Mots-clés : Rational trigonometry, vector trigonometry, rotor coordinates, half-slope
@article{JGG_2017_21_1_JGG_2017_21_1_a8,
     author = {N. J. Wildberger },
     title = {Rotor {Coordinates} and {Vector} {Trigonometry}},
     journal = {Journal for geometry and graphics},
     pages = {89--106},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2017},
     url = {http://geodesic.mathdoc.fr/item/JGG_2017_21_1_JGG_2017_21_1_a8/}
}
TY  - JOUR
AU  - N. J. Wildberger 
TI  - Rotor Coordinates and Vector Trigonometry
JO  - Journal for geometry and graphics
PY  - 2017
SP  - 89
EP  - 106
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JGG_2017_21_1_JGG_2017_21_1_a8/
ID  - JGG_2017_21_1_JGG_2017_21_1_a8
ER  - 
%0 Journal Article
%A N. J. Wildberger 
%T Rotor Coordinates and Vector Trigonometry
%J Journal for geometry and graphics
%D 2017
%P 89-106
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JGG_2017_21_1_JGG_2017_21_1_a8/
%F JGG_2017_21_1_JGG_2017_21_1_a8
N. J. Wildberger . Rotor Coordinates and Vector Trigonometry. Journal for geometry and graphics, Tome 21 (2017) no. 1, pp. 89-106. http://geodesic.mathdoc.fr/item/JGG_2017_21_1_JGG_2017_21_1_a8/