Visualization of Fractals Based on Regular Convex Polychora
Journal for geometry and graphics, Tome 19 (2015) no. 1, pp. 1-11.

Voir la notice de l'article provenant de la source Heldermann Verlag

The paper deals with methods of visualizing deterministic fractals based on regular convex polychora in the four-dimensional (4D) Euclidean space. A survey of different approaches used in the visualization of 4D graphics is presented on examples of fractals using various techniques. The problem of information losses during the projection process from 4D to 3D is analyzed and discussed. It is concluded that there is no single strict rule for the visualization of 4D fractals; the type of projection should be chosen depending on unique geometric characteristics of the given 4D fractal.
Classification : 51N05, 51M20, 28A80
Mots-clés : Deterministic fractals, four-dimensional geometry, regular convex polychora, projection of higher-dimensional data
@article{JGG_2015_19_1_JGG_2015_19_1_a0,
     author = {A. Katunin},
     title = {Visualization of {Fractals} {Based} on {Regular} {Convex} {Polychora}},
     journal = {Journal for geometry and graphics},
     pages = {1--11},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2015},
     url = {http://geodesic.mathdoc.fr/item/JGG_2015_19_1_JGG_2015_19_1_a0/}
}
TY  - JOUR
AU  - A. Katunin
TI  - Visualization of Fractals Based on Regular Convex Polychora
JO  - Journal for geometry and graphics
PY  - 2015
SP  - 1
EP  - 11
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JGG_2015_19_1_JGG_2015_19_1_a0/
ID  - JGG_2015_19_1_JGG_2015_19_1_a0
ER  - 
%0 Journal Article
%A A. Katunin
%T Visualization of Fractals Based on Regular Convex Polychora
%J Journal for geometry and graphics
%D 2015
%P 1-11
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JGG_2015_19_1_JGG_2015_19_1_a0/
%F JGG_2015_19_1_JGG_2015_19_1_a0
A. Katunin. Visualization of Fractals Based on Regular Convex Polychora. Journal for geometry and graphics, Tome 19 (2015) no. 1, pp. 1-11. http://geodesic.mathdoc.fr/item/JGG_2015_19_1_JGG_2015_19_1_a0/