On a 3D Extension of the Simson-Wallace Theorem
Journal for geometry and graphics, Tome 18 (2014) no. 2, pp. 205-215.

Voir la notice de l'article provenant de la source Heldermann Verlag

The following 3D extension of the Simson-Wallace theorem is proved by a method which differs from that used in the past (Theorem 1): Let K, L, M, N be orthogonal projections of a point P to the faces BCD, ACD, ABD, and ABC of a tetrahedron ABCD. Then, all points P with the property that the tetrahedron KLMN has a constant volume belong to a cubic surface. Next, the main theorem (Theorem 2) is proved which states that also the converse of Theorem 1 holds. Furthermore, we verify Theorem 2 for a regular tetrahedron by descriptive geometry methods using dynamic geometry software. To do this we take advantage of the fact that this cubic surface can be represented by a parametric system of conics which lie in mutually parallel planes.
Classification : 51N20, 51N05, 51N35
Mots-clés : Simson-Wallace loci, cubic surface, Cayley cubic, Monge projection
@article{JGG_2014_18_2_JGG_2014_18_2_a5,
     author = {P. Pech },
     title = {On a {3D} {Extension} of the {Simson-Wallace} {Theorem}},
     journal = {Journal for geometry and graphics},
     pages = {205--215},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2014},
     url = {http://geodesic.mathdoc.fr/item/JGG_2014_18_2_JGG_2014_18_2_a5/}
}
TY  - JOUR
AU  - P. Pech 
TI  - On a 3D Extension of the Simson-Wallace Theorem
JO  - Journal for geometry and graphics
PY  - 2014
SP  - 205
EP  - 215
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JGG_2014_18_2_JGG_2014_18_2_a5/
ID  - JGG_2014_18_2_JGG_2014_18_2_a5
ER  - 
%0 Journal Article
%A P. Pech 
%T On a 3D Extension of the Simson-Wallace Theorem
%J Journal for geometry and graphics
%D 2014
%P 205-215
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JGG_2014_18_2_JGG_2014_18_2_a5/
%F JGG_2014_18_2_JGG_2014_18_2_a5
P. Pech . On a 3D Extension of the Simson-Wallace Theorem. Journal for geometry and graphics, Tome 18 (2014) no. 2, pp. 205-215. http://geodesic.mathdoc.fr/item/JGG_2014_18_2_JGG_2014_18_2_a5/