On Relaxed Elastic Lines of Second Kind on a Curved Hypersurface in the n-Dimensional Euclidean Space
Journal for geometry and graphics, Tome 18 (2014) no. 1, pp. 81-95
Cet article a éte moissonné depuis la source Heldermann Verlag
We define the relaxed elastic lines of second kind on an oriented surface in the Euclidean n-space and derive the Euler-Lagrange equations. Furthermore, an example is presented. Special emphasis is laid on the particular case when these curves are at the same time geodesic.
Classification :
53A07, 49Q20, 53C22
Mots-clés : Relaxed elastic line, geodesic curves, intrinsic equation, Euler-Lagrange equation
Mots-clés : Relaxed elastic line, geodesic curves, intrinsic equation, Euler-Lagrange equation
@article{JGG_2014_18_1_JGG_2014_18_1_a6,
author = {A. Sarioglugil and A. Tutar and H. Stachel },
title = {On {Relaxed} {Elastic} {Lines} of {Second} {Kind} on a {Curved} {Hypersurface} in the {n-Dimensional} {Euclidean} {Space}},
journal = {Journal for geometry and graphics},
pages = {81--95},
year = {2014},
volume = {18},
number = {1},
url = {http://geodesic.mathdoc.fr/item/JGG_2014_18_1_JGG_2014_18_1_a6/}
}
TY - JOUR AU - A. Sarioglugil AU - A. Tutar AU - H. Stachel TI - On Relaxed Elastic Lines of Second Kind on a Curved Hypersurface in the n-Dimensional Euclidean Space JO - Journal for geometry and graphics PY - 2014 SP - 81 EP - 95 VL - 18 IS - 1 UR - http://geodesic.mathdoc.fr/item/JGG_2014_18_1_JGG_2014_18_1_a6/ ID - JGG_2014_18_1_JGG_2014_18_1_a6 ER -
%0 Journal Article %A A. Sarioglugil %A A. Tutar %A H. Stachel %T On Relaxed Elastic Lines of Second Kind on a Curved Hypersurface in the n-Dimensional Euclidean Space %J Journal for geometry and graphics %D 2014 %P 81-95 %V 18 %N 1 %U http://geodesic.mathdoc.fr/item/JGG_2014_18_1_JGG_2014_18_1_a6/ %F JGG_2014_18_1_JGG_2014_18_1_a6
A. Sarioglugil; A. Tutar; H. Stachel . On Relaxed Elastic Lines of Second Kind on a Curved Hypersurface in the n-Dimensional Euclidean Space. Journal for geometry and graphics, Tome 18 (2014) no. 1, pp. 81-95. http://geodesic.mathdoc.fr/item/JGG_2014_18_1_JGG_2014_18_1_a6/