On Relaxed Elastic Lines of Second Kind on a Curved Hypersurface in the n-Dimensional Euclidean Space
Journal for geometry and graphics, Tome 18 (2014) no. 1, pp. 81-95.

Voir la notice de l'article provenant de la source Heldermann Verlag

We define the relaxed elastic lines of second kind on an oriented surface in the Euclidean n-space and derive the Euler-Lagrange equations. Furthermore, an example is presented. Special emphasis is laid on the particular case when these curves are at the same time geodesic.
Classification : 53A07, 49Q20, 53C22
Mots-clés : Relaxed elastic line, geodesic curves, intrinsic equation, Euler-Lagrange equation
@article{JGG_2014_18_1_JGG_2014_18_1_a6,
     author = {A. Sarioglugil and A. Tutar and H. Stachel },
     title = {On {Relaxed} {Elastic} {Lines} of {Second} {Kind} on a {Curved} {Hypersurface} in the {n-Dimensional} {Euclidean} {Space}},
     journal = {Journal for geometry and graphics},
     pages = {81--95},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2014},
     url = {http://geodesic.mathdoc.fr/item/JGG_2014_18_1_JGG_2014_18_1_a6/}
}
TY  - JOUR
AU  - A. Sarioglugil
AU  - A. Tutar
AU  - H. Stachel 
TI  - On Relaxed Elastic Lines of Second Kind on a Curved Hypersurface in the n-Dimensional Euclidean Space
JO  - Journal for geometry and graphics
PY  - 2014
SP  - 81
EP  - 95
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JGG_2014_18_1_JGG_2014_18_1_a6/
ID  - JGG_2014_18_1_JGG_2014_18_1_a6
ER  - 
%0 Journal Article
%A A. Sarioglugil
%A A. Tutar
%A H. Stachel 
%T On Relaxed Elastic Lines of Second Kind on a Curved Hypersurface in the n-Dimensional Euclidean Space
%J Journal for geometry and graphics
%D 2014
%P 81-95
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JGG_2014_18_1_JGG_2014_18_1_a6/
%F JGG_2014_18_1_JGG_2014_18_1_a6
A. Sarioglugil; A. Tutar; H. Stachel . On Relaxed Elastic Lines of Second Kind on a Curved Hypersurface in the n-Dimensional Euclidean Space. Journal for geometry and graphics, Tome 18 (2014) no. 1, pp. 81-95. http://geodesic.mathdoc.fr/item/JGG_2014_18_1_JGG_2014_18_1_a6/