The Differentiable Manifold of Spherical Deltoids: Their Classification
Journal for geometry and graphics, Tome 18 (2014) no. 1, pp. 1-6.

Voir la notice de l'article provenant de la source Heldermann Verlag

We introduce the concepts of spherical deltoid of type II and spherical deltoid of type II, describing geometrical methods to construct both types. It is shown that any spherical deltoid is congruent to a spherical deltoid of type I and to a spherical deltoid of type II. We classify spherical deltoids taking into account the relative positions of the spherical moons containing their sides. This allows us to conclude that the class of all spherical deltoids is a differentiable manifold of dimension three.
Classification : 51E12, 51K05
Mots-clés : Spherical geometry, applications of spherical trigonometry
@article{JGG_2014_18_1_JGG_2014_18_1_a0,
     author = {C. P. Avelino and A. F. Santos },
     title = {The {Differentiable} {Manifold} of {Spherical} {Deltoids:} {Their} {Classification}},
     journal = {Journal for geometry and graphics},
     pages = {1--6},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2014},
     url = {http://geodesic.mathdoc.fr/item/JGG_2014_18_1_JGG_2014_18_1_a0/}
}
TY  - JOUR
AU  - C. P. Avelino
AU  - A. F. Santos 
TI  - The Differentiable Manifold of Spherical Deltoids: Their Classification
JO  - Journal for geometry and graphics
PY  - 2014
SP  - 1
EP  - 6
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JGG_2014_18_1_JGG_2014_18_1_a0/
ID  - JGG_2014_18_1_JGG_2014_18_1_a0
ER  - 
%0 Journal Article
%A C. P. Avelino
%A A. F. Santos 
%T The Differentiable Manifold of Spherical Deltoids: Their Classification
%J Journal for geometry and graphics
%D 2014
%P 1-6
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JGG_2014_18_1_JGG_2014_18_1_a0/
%F JGG_2014_18_1_JGG_2014_18_1_a0
C. P. Avelino; A. F. Santos . The Differentiable Manifold of Spherical Deltoids: Their Classification. Journal for geometry and graphics, Tome 18 (2014) no. 1, pp. 1-6. http://geodesic.mathdoc.fr/item/JGG_2014_18_1_JGG_2014_18_1_a0/