Equioptic Points of a Triangle
Journal for geometry and graphics, Tome 17 (2013) no. 1, pp. 21-3.

Voir la notice de l'article provenant de la source Heldermann Verlag

The locus of points where two non-concentric circles c1 and c2 are seen under equal angles is the equioptic circle e. The equioptic circles of the excircles of a triangle Δ have a common radical axis r. Therefore the excircles of a triangle share up to two real points, i.e., the equioptic points of Δ from which the circles can be seen under equal angles. The line r carries a lot of known triangle centers. Further we find that any triplet of circles tangent to the sides of Δ has up to two real equioptic points. The three radical axes of triplets of circles containing the incircle are concurrent in a new triangle center.
Classification : 51M04
Mots-clés : Triangle, excircle, incircle, equioptic circle, equioptic points, center of similarity, radical axis
@article{JGG_2013_17_1_JGG_2013_17_1_a2,
     author = {B. Odehnal },
     title = {Equioptic {Points} of a {Triangle}},
     journal = {Journal for geometry and graphics},
     pages = {21--3},
     publisher = {mathdoc},
     volume = {17},
     number = {1},
     year = {2013},
     url = {http://geodesic.mathdoc.fr/item/JGG_2013_17_1_JGG_2013_17_1_a2/}
}
TY  - JOUR
AU  - B. Odehnal 
TI  - Equioptic Points of a Triangle
JO  - Journal for geometry and graphics
PY  - 2013
SP  - 21
EP  - 3
VL  - 17
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JGG_2013_17_1_JGG_2013_17_1_a2/
ID  - JGG_2013_17_1_JGG_2013_17_1_a2
ER  - 
%0 Journal Article
%A B. Odehnal 
%T Equioptic Points of a Triangle
%J Journal for geometry and graphics
%D 2013
%P 21-3
%V 17
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JGG_2013_17_1_JGG_2013_17_1_a2/
%F JGG_2013_17_1_JGG_2013_17_1_a2
B. Odehnal . Equioptic Points of a Triangle. Journal for geometry and graphics, Tome 17 (2013) no. 1, pp. 21-3. http://geodesic.mathdoc.fr/item/JGG_2013_17_1_JGG_2013_17_1_a2/