Flexible Octahedra in the Projective Extension of the Euclidean 3-Space
Journal for geometry and graphics, Tome 14 (2010) no. 2, pp. 147-169.

Voir la notice de l'article provenant de la source Heldermann Verlag

We complete the classification of flexible octahedra in the projective extension of the Euclidean 3-space. If all vertices are Euclidean points then we get the well known Bricard octahedra. All flexible octahedra with one vertex on the plane at infinity were already determined by the author in the context of self-motions of TSSM manipulators with two parallel rotary axes. Therefore we are only interested in those cases where at least two vertices are ideal points. Our approach is based on Kokotsakis meshes and reducible compositions of two four-bar linkages.
Classification : 53A17, 52B10
Mots-clés : Flexible octahedra, Kokotsakis meshes, Bricard octahedra
@article{JGG_2010_14_2_JGG_2010_14_2_a2,
     author = {G. Nawratil },
     title = {Flexible {Octahedra} in the {Projective} {Extension} of the {Euclidean} {3-Space}},
     journal = {Journal for geometry and graphics},
     pages = {147--169},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {2010},
     url = {http://geodesic.mathdoc.fr/item/JGG_2010_14_2_JGG_2010_14_2_a2/}
}
TY  - JOUR
AU  - G. Nawratil 
TI  - Flexible Octahedra in the Projective Extension of the Euclidean 3-Space
JO  - Journal for geometry and graphics
PY  - 2010
SP  - 147
EP  - 169
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JGG_2010_14_2_JGG_2010_14_2_a2/
ID  - JGG_2010_14_2_JGG_2010_14_2_a2
ER  - 
%0 Journal Article
%A G. Nawratil 
%T Flexible Octahedra in the Projective Extension of the Euclidean 3-Space
%J Journal for geometry and graphics
%D 2010
%P 147-169
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JGG_2010_14_2_JGG_2010_14_2_a2/
%F JGG_2010_14_2_JGG_2010_14_2_a2
G. Nawratil . Flexible Octahedra in the Projective Extension of the Euclidean 3-Space. Journal for geometry and graphics, Tome 14 (2010) no. 2, pp. 147-169. http://geodesic.mathdoc.fr/item/JGG_2010_14_2_JGG_2010_14_2_a2/