More on the Steiner-Lehmus Theorem
Journal for geometry and graphics, Tome 14 (2010) no. 2, pp. 127-133.

Voir la notice de l'article provenant de la source Heldermann Verlag

For any point P in the plane of the triangle ABC, we let BBP, CCP be the cevians through P. Then the Steiner-Lehmus Theorem states that if I is the incenter of ABC and if BBI = CCI then AB = AC. Letting the internal angle bisector of A meet BC at J, it is stated by V. Nicula and C. Pohoata that the same holds if I is replaced by any point on the ray AJ. However, the proof there is valid for points on segment AJ and for points on the extension of AJ that are not very far away from side BC. In this paper, we consider all points P on the line AJ and we answer the question whether BBP = CCP implies AB = AC, or equivalently whether AB ≠ AC implies BBP ≠ CCP. For a triangle ABC with AB ≠ AC, we describe a line segment XY on the line AJ inside of which there exists P with BBP = CCP and ouside of which there are no such points.
Classification : 51M04
Mots-clés : Steiner-Lehmus theorem, cevian, Ceva's theorem
@article{JGG_2010_14_2_JGG_2010_14_2_a0,
     author = {S. Abu-Saymeh and M. Hajja },
     title = {More on the {Steiner-Lehmus} {Theorem}},
     journal = {Journal for geometry and graphics},
     pages = {127--133},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {2010},
     url = {http://geodesic.mathdoc.fr/item/JGG_2010_14_2_JGG_2010_14_2_a0/}
}
TY  - JOUR
AU  - S. Abu-Saymeh
AU  - M. Hajja 
TI  - More on the Steiner-Lehmus Theorem
JO  - Journal for geometry and graphics
PY  - 2010
SP  - 127
EP  - 133
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JGG_2010_14_2_JGG_2010_14_2_a0/
ID  - JGG_2010_14_2_JGG_2010_14_2_a0
ER  - 
%0 Journal Article
%A S. Abu-Saymeh
%A M. Hajja 
%T More on the Steiner-Lehmus Theorem
%J Journal for geometry and graphics
%D 2010
%P 127-133
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JGG_2010_14_2_JGG_2010_14_2_a0/
%F JGG_2010_14_2_JGG_2010_14_2_a0
S. Abu-Saymeh; M. Hajja . More on the Steiner-Lehmus Theorem. Journal for geometry and graphics, Tome 14 (2010) no. 2, pp. 127-133. http://geodesic.mathdoc.fr/item/JGG_2010_14_2_JGG_2010_14_2_a0/