On the Combinatorics of Inflexion Arches of Saddle Spheres
Journal for geometry and graphics, Tome 13 (2009) no. 1, pp. 59-73.

Voir la notice de l'article provenant de la source Heldermann Verlag

Each saddle sphere $\Gamma \subset S^3$ is known to generate a spanning arrangement of at least four non-crossing oriented great semicircles on $S^2$. Each semicircle arises as the projection of an inflexion arch of the surface $\Gamma$. In the paper we prove the converse: each spanning arrangement of non-crossing oriented great semicircles is generated by some smooth saddle sphere. In particular, this means the diversity of saddle spheres on $S^3$. Recall that each $C^2$-smooth saddle sphere leads directly to a counterexample to the following conjecture of A. D. Alexandrov: \par {\it Let $K \subset \mathbb{R}^3$ be a smooth convex body. If, for a constant $C$, at every point of $\partial K$, we have $R_1 \leq C \leq R_2$, then $K$ is a ball ($R_1$ and $R_2$ stand for the principal curvature radii of $\partial K$).} \par In the framework of the conjecture, the main result of the paper means that all counterexamples can be classified by non-crossing arrangements of oriented great semicircles.
Classification : 53C45, 53A10
Mots-clés : Alexandrov's conjecture, inflexion point, inflexion arch, saddle surface, hyperbolic virtual polytope
@article{JGG_2009_13_1_JGG_2009_13_1_a5,
     author = {G. Panina },
     title = {On the {Combinatorics} of {Inflexion} {Arches} of {Saddle} {Spheres}},
     journal = {Journal for geometry and graphics},
     pages = {59--73},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {2009},
     url = {http://geodesic.mathdoc.fr/item/JGG_2009_13_1_JGG_2009_13_1_a5/}
}
TY  - JOUR
AU  - G. Panina 
TI  - On the Combinatorics of Inflexion Arches of Saddle Spheres
JO  - Journal for geometry and graphics
PY  - 2009
SP  - 59
EP  - 73
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JGG_2009_13_1_JGG_2009_13_1_a5/
ID  - JGG_2009_13_1_JGG_2009_13_1_a5
ER  - 
%0 Journal Article
%A G. Panina 
%T On the Combinatorics of Inflexion Arches of Saddle Spheres
%J Journal for geometry and graphics
%D 2009
%P 59-73
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JGG_2009_13_1_JGG_2009_13_1_a5/
%F JGG_2009_13_1_JGG_2009_13_1_a5
G. Panina . On the Combinatorics of Inflexion Arches of Saddle Spheres. Journal for geometry and graphics, Tome 13 (2009) no. 1, pp. 59-73. http://geodesic.mathdoc.fr/item/JGG_2009_13_1_JGG_2009_13_1_a5/