Subdivision Algorithms for Ruled Surfaces
Journal for geometry and graphics, Tome 12 (2008) no. 1, pp. 35-52.

Voir la notice de l'article provenant de la source Heldermann Verlag

Recent research has produced results on subdivision in arbitrary manifolds. These results can be applied to the manifold of lines and thus we can create subdivision schemes especially for ruled surfaces. We present different methods for refining discrete models of ruled surfaces: An algorithm combining subdivision and projection to the manifold of lines in Euclidean three-space. A further algorithm combines subdivision for the striction curve with geodesic subdivision in the Euclidean unit sphere. The third method is based on the Denavit-Hartenberg-Method for serial robots. We refine the sequence of motions of the Sannia frame by means of geodesic subdivision in the group of Euclidean motions.
Classification : 53A25, 65Y25, 52-xx, 68U07
Mots-clés : Subdivision, ruled surface, striction curve, geodesic subdivision, Euclidean motion, Sannia frame
@article{JGG_2008_12_1_JGG_2008_12_1_a3,
     author = {B. Odehnal },
     title = {Subdivision {Algorithms} for {Ruled} {Surfaces}},
     journal = {Journal for geometry and graphics},
     pages = {35--52},
     publisher = {mathdoc},
     volume = {12},
     number = {1},
     year = {2008},
     url = {http://geodesic.mathdoc.fr/item/JGG_2008_12_1_JGG_2008_12_1_a3/}
}
TY  - JOUR
AU  - B. Odehnal 
TI  - Subdivision Algorithms for Ruled Surfaces
JO  - Journal for geometry and graphics
PY  - 2008
SP  - 35
EP  - 52
VL  - 12
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JGG_2008_12_1_JGG_2008_12_1_a3/
ID  - JGG_2008_12_1_JGG_2008_12_1_a3
ER  - 
%0 Journal Article
%A B. Odehnal 
%T Subdivision Algorithms for Ruled Surfaces
%J Journal for geometry and graphics
%D 2008
%P 35-52
%V 12
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JGG_2008_12_1_JGG_2008_12_1_a3/
%F JGG_2008_12_1_JGG_2008_12_1_a3
B. Odehnal . Subdivision Algorithms for Ruled Surfaces. Journal for geometry and graphics, Tome 12 (2008) no. 1, pp. 35-52. http://geodesic.mathdoc.fr/item/JGG_2008_12_1_JGG_2008_12_1_a3/