Ortho-Circles of Dupin Cyclides
Journal for geometry and graphics, Tome 10 (2006) no. 1, pp. 73-98.

Voir la notice de l'article provenant de la source Heldermann Verlag

We study the set of circles which intersect a Dupin cyclide in at least two different points orthogonally. Dupin cyclides can be obtained by inverting a cylinder, or cone of revolution, or by inverting a torus. Since orthogonal intersection is invariant under M�bius transformations we first study the ortho-circles of cylinder/cone of revolution and tori and transfer the results afterwards.
Classification : 53A05, 51N20, 51N35
Mots-clés : Ortho-circle, double normal, Dupin cyclide, torus, inversion
@article{JGG_2006_10_1_JGG_2006_10_1_a5,
     author = {M. Schrott and B. Odehnal },
     title = {Ortho-Circles of {Dupin} {Cyclides}},
     journal = {Journal for geometry and graphics},
     pages = {73--98},
     publisher = {mathdoc},
     volume = {10},
     number = {1},
     year = {2006},
     url = {http://geodesic.mathdoc.fr/item/JGG_2006_10_1_JGG_2006_10_1_a5/}
}
TY  - JOUR
AU  - M. Schrott
AU  - B. Odehnal 
TI  - Ortho-Circles of Dupin Cyclides
JO  - Journal for geometry and graphics
PY  - 2006
SP  - 73
EP  - 98
VL  - 10
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JGG_2006_10_1_JGG_2006_10_1_a5/
ID  - JGG_2006_10_1_JGG_2006_10_1_a5
ER  - 
%0 Journal Article
%A M. Schrott
%A B. Odehnal 
%T Ortho-Circles of Dupin Cyclides
%J Journal for geometry and graphics
%D 2006
%P 73-98
%V 10
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JGG_2006_10_1_JGG_2006_10_1_a5/
%F JGG_2006_10_1_JGG_2006_10_1_a5
M. Schrott; B. Odehnal . Ortho-Circles of Dupin Cyclides. Journal for geometry and graphics, Tome 10 (2006) no. 1, pp. 73-98. http://geodesic.mathdoc.fr/item/JGG_2006_10_1_JGG_2006_10_1_a5/