A Transformation Based on the Cubic Parabola y = x3
Journal for geometry and graphics, Tome 10 (2006) no. 1, pp. 15-21
Cet article a éte moissonné depuis la source Heldermann Verlag
A particular geometric transformation is investigated, the $\Lambda$-transformation. It is defined on the set $T$ of tangent lines of the cubic parabola $C^3: y = x^3$ in the Euclidean plane $R^2$. Let $t$ be any line from the set $T$. The point $X\in t$ is called the image of a certain point $M\in t$ under the $\Lambda$-transformation, if the condition $(PQMX) = \lambda$ ($\lambda\in R$ and $\lambda \neq 0,1$) holds, where $(PQMX)$ is the cross-ratio of the four points; $P$ is the point of contact, and $Q$ is the remaining point of intersection between the tangent line $t$ and the basic curve $C^3$. Varying the line $t$ in the set $T$ and the point $M$ along the line $t$ we obtain a transformation of the plane $R^2$ into $R^2$. The image of any straight line $p \in R^2$ is discussed too.
Classification :
51N15, 51N35
Mots-clés : Lambda-transformation, quadratic transformation
Mots-clés : Lambda-transformation, quadratic transformation
@article{JGG_2006_10_1_JGG_2006_10_1_a1,
author = {E. Korczak },
title = {A {Transformation} {Based} on the {Cubic} {Parabola} y = x\protect\textsuperscript{3}},
journal = {Journal for geometry and graphics},
pages = {15--21},
year = {2006},
volume = {10},
number = {1},
url = {http://geodesic.mathdoc.fr/item/JGG_2006_10_1_JGG_2006_10_1_a1/}
}
E. Korczak . A Transformation Based on the Cubic Parabola y = x3. Journal for geometry and graphics, Tome 10 (2006) no. 1, pp. 15-21. http://geodesic.mathdoc.fr/item/JGG_2006_10_1_JGG_2006_10_1_a1/