Blending curves
Journal for geometry and graphics, Tome 9 (2005) no. 1, pp. 67-75.

Voir la notice de l'article provenant de la source Heldermann Verlag

Two arbitrarily given curves $k_1(t)$ and $k_2(t)$ are blended to a third curve $b(t)$ so that $b$ joins $k_1$ and $k_2$ in given points $A_1$ and $B_2$ $C^l$- and $C^m$-continuously, respectively. In order to meet this objective we use polynomial functions $\alpha_{lm}(t)$ for the blending process. The Casteljau algorithm for curves is used in a special way to build the blended curve $b(t)$. Furthermore we can use our construction to generate interpolating spline curves.
Classification : 68U05
Mots-clés : Spline curves, Hermite interpolation, interpolation
@article{JGG_2005_9_1_JGG_2005_9_1_a6,
     author = {A. Wiltsche },
     title = {Blending curves},
     journal = {Journal for geometry and graphics},
     pages = {67--75},
     publisher = {mathdoc},
     volume = {9},
     number = {1},
     year = {2005},
     url = {http://geodesic.mathdoc.fr/item/JGG_2005_9_1_JGG_2005_9_1_a6/}
}
TY  - JOUR
AU  - A. Wiltsche 
TI  - Blending curves
JO  - Journal for geometry and graphics
PY  - 2005
SP  - 67
EP  - 75
VL  - 9
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JGG_2005_9_1_JGG_2005_9_1_a6/
ID  - JGG_2005_9_1_JGG_2005_9_1_a6
ER  - 
%0 Journal Article
%A A. Wiltsche 
%T Blending curves
%J Journal for geometry and graphics
%D 2005
%P 67-75
%V 9
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JGG_2005_9_1_JGG_2005_9_1_a6/
%F JGG_2005_9_1_JGG_2005_9_1_a6
A. Wiltsche . Blending curves. Journal for geometry and graphics, Tome 9 (2005) no. 1, pp. 67-75. http://geodesic.mathdoc.fr/item/JGG_2005_9_1_JGG_2005_9_1_a6/