Blending curves
Journal for geometry and graphics, Tome 9 (2005) no. 1, pp. 67-75
Cet article a éte moissonné depuis la source Heldermann Verlag
Two arbitrarily given curves $k_1(t)$ and $k_2(t)$ are blended to a third curve $b(t)$ so that $b$ joins $k_1$ and $k_2$ in given points $A_1$ and $B_2$ $C^l$- and $C^m$-continuously, respectively. In order to meet this objective we use polynomial functions $\alpha_{lm}(t)$ for the blending process. The Casteljau algorithm for curves is used in a special way to build the blended curve $b(t)$. Furthermore we can use our construction to generate interpolating spline curves.
Classification :
68U05
Mots-clés : Spline curves, Hermite interpolation, interpolation
Mots-clés : Spline curves, Hermite interpolation, interpolation
@article{JGG_2005_9_1_JGG_2005_9_1_a6,
author = {A. Wiltsche },
title = {Blending curves},
journal = {Journal for geometry and graphics},
pages = {67--75},
year = {2005},
volume = {9},
number = {1},
url = {http://geodesic.mathdoc.fr/item/JGG_2005_9_1_JGG_2005_9_1_a6/}
}
A. Wiltsche . Blending curves. Journal for geometry and graphics, Tome 9 (2005) no. 1, pp. 67-75. http://geodesic.mathdoc.fr/item/JGG_2005_9_1_JGG_2005_9_1_a6/