Golden Hexagons
Journal for geometry and graphics, Tome 6 (2002) no. 2, pp. 167-182.

Voir la notice de l'article provenant de la source Heldermann Verlag

A "golden hexagon" is a set of six points, which is projectively equivalent to the vertices of a regular pentagon together with its center. Such a geometric figure generalizes in some sense the classical one-dimensional golden section to two dimensions. This paper deals with some remarkable properties of golden hexagons and with special Euclidean representatives as well as with further generalizations. Keywords: golden section, golden ratio, golden cross ratio, geometrically defined iterative processes, Desargues' Theorem, polarity with respect to a conic, Moebius circle geometry, bio-geometry, regular polyhedra. Classification: 51M04; 51M05, 51M20.
@article{JGG_2002_6_2_a5,
     author = {G. Weiss},
     title = {Golden {Hexagons}},
     journal = {Journal for geometry and graphics},
     pages = {167--182},
     publisher = {mathdoc},
     volume = {6},
     number = {2},
     year = {2002},
     url = {http://geodesic.mathdoc.fr/item/JGG_2002_6_2_a5/}
}
TY  - JOUR
AU  - G. Weiss
TI  - Golden Hexagons
JO  - Journal for geometry and graphics
PY  - 2002
SP  - 167
EP  - 182
VL  - 6
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JGG_2002_6_2_a5/
ID  - JGG_2002_6_2_a5
ER  - 
%0 Journal Article
%A G. Weiss
%T Golden Hexagons
%J Journal for geometry and graphics
%D 2002
%P 167-182
%V 6
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JGG_2002_6_2_a5/
%F JGG_2002_6_2_a5
G. Weiss. Golden Hexagons. Journal for geometry and graphics, Tome 6 (2002) no. 2, pp. 167-182. http://geodesic.mathdoc.fr/item/JGG_2002_6_2_a5/