Extension of the 'Villarceau-Section' to Surfaces of Revolution with a Generating Conic
Journal for geometry and graphics, Tome 6 (2002) no. 2, pp. 121-132.

Voir la notice de l'article provenant de la source Heldermann Verlag

When a surface of revolution with a conic as meridian is intersected with a double tangential plane, then the curve of intersection splits into two congruent conics. This decomposition is valid whether the surface of revolution intersects the axis of rotation or not. It holds even for imaginary surfaces of revolution. We present these curves of intersection in different cases and we also visualize imaginary curves. The arguments are based on geometrical reasoning. But we also give in special cases an analytical treatment. Keywords: Villarceau-section, ring torus, surface or revolution with a generating conic, double tangential plane. Classification1: 51N05.
@article{JGG_2002_6_2_a1,
     author = {A. Hirsch},
     title = {Extension of the {'Villarceau-Section'} to {Surfaces} of {Revolution} with a {Generating} {Conic}},
     journal = {Journal for geometry and graphics},
     pages = {121--132},
     publisher = {mathdoc},
     volume = {6},
     number = {2},
     year = {2002},
     url = {http://geodesic.mathdoc.fr/item/JGG_2002_6_2_a1/}
}
TY  - JOUR
AU  - A. Hirsch
TI  - Extension of the 'Villarceau-Section' to Surfaces of Revolution with a Generating Conic
JO  - Journal for geometry and graphics
PY  - 2002
SP  - 121
EP  - 132
VL  - 6
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JGG_2002_6_2_a1/
ID  - JGG_2002_6_2_a1
ER  - 
%0 Journal Article
%A A. Hirsch
%T Extension of the 'Villarceau-Section' to Surfaces of Revolution with a Generating Conic
%J Journal for geometry and graphics
%D 2002
%P 121-132
%V 6
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JGG_2002_6_2_a1/
%F JGG_2002_6_2_a1
A. Hirsch. Extension of the 'Villarceau-Section' to Surfaces of Revolution with a Generating Conic. Journal for geometry and graphics, Tome 6 (2002) no. 2, pp. 121-132. http://geodesic.mathdoc.fr/item/JGG_2002_6_2_a1/