Solutions of the Dirac-Fock equations without projector
Journées équations aux dérivées partielles (2000), article no. 12, 10 p.

Voir la notice de l'acte provenant de la source Numdam

In this paper we prove the existence of infinitely many solutions of the Dirac-Fock equations with N electrons turning around a nucleus of atomic charge Z, satisfying N<Z+1 and αmax(Z,N)<2/(2/π+π/2), where α is the fundamental constant of the electromagnetic interaction (approximately 1/137). This work is an improvement of an article of Esteban-Séré, where the same result was proved under more restrictive assumptions on N.

@incollection{JEDP_2000____A12_0,
     author = {Paturel, \'Eric},
     title = {Solutions of the {Dirac-Fock} equations without projector},
     booktitle = {},
     series = {Journ\'ees \'equations aux d\'eriv\'ees partielles},
     eid = {12},
     pages = {1--10},
     publisher = {Universit\'e de Nantes},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JEDP_2000____A12_0/}
}
TY  - JOUR
AU  - Paturel, Éric
TI  - Solutions of the Dirac-Fock equations without projector
JO  - Journées équations aux dérivées partielles
PY  - 2000
SP  - 1
EP  - 10
PB  - Université de Nantes
UR  - http://geodesic.mathdoc.fr/item/JEDP_2000____A12_0/
LA  - en
ID  - JEDP_2000____A12_0
ER  - 
%0 Journal Article
%A Paturel, Éric
%T Solutions of the Dirac-Fock equations without projector
%J Journées équations aux dérivées partielles
%D 2000
%P 1-10
%I Université de Nantes
%U http://geodesic.mathdoc.fr/item/JEDP_2000____A12_0/
%G en
%F JEDP_2000____A12_0
Paturel, Éric. Solutions of the Dirac-Fock equations without projector. Journées équations aux dérivées partielles (2000), article  no. 12, 10 p. http://geodesic.mathdoc.fr/item/JEDP_2000____A12_0/

[1] V. I. Burenkov and W. D. Evans. On the evaluation of the norm of an integral operator associated with the stability of one-electron atoms. Proc. Roy. Soc. Edinburgh Sect. A, 128 (5):993-1005, 1998. | Zbl | MR

[2] C. Conley and E. Zehnder. Morse-type index theory for flows and periodic solutions for Hamiltonian equations. Comm. Pure Appl. Math., 37 (2):207-253, 1984. | Zbl | MR

[3] J. Desclaux. Relativistic Dirac-Fock expectation values for atoms with Z = 1 to Z = 120. Atomic Data and Nuclear Data Table, 12:311-406, 1973.

[4] M. J. Esteban and E. Séré. Solutions of the Dirac-Fock equations for atoms and molecules. Comm. Math. Phys., 203 (3):499-530, 1999. | Zbl | MR

[5] I. P. Grant. Relativistic Calculation of Atomic Structures. Adv. Phys., 19:747-811, 1970.

[6] Y.K. Kim. Relativistic self-consistent field theory for closed-shell atoms. Phys. Rev., 154:17-39, 1967.

[7] E.H. Lieb and B. Simon. The Hartree-Fock theory for Coulomb systems. Comm. Math. Phys., 53 (3):185-194, 1977. | MR

[8] P.-L. Lions. Solutions of Hartree-Fock equations for Coulomb systems. Comm. Math. Phys., 109 (1):33-97, 1987. | Zbl | MR

[9] E. Paturel. Solutions of the Dirac-Fock equations without projector. Cahiers du Ceremade preprint 9954, mp_arc preprint 99-476, to appear in Annales Henri Poincaré (Birkhäuser). | Zbl

[10] B. Swirles. The relativistic self-consistent field. Proc. Roy. Soc., A 152:625-649, 1935. | Zbl | JFM

[11] C. Tix. Lower bound for the ground state energy of the no-pair Hamiltonian. Phys. Lett. B, 405(3-4):293-296, 1997. | MR

[12] C. Tix. Strict positivity of a relativistic Hamiltonian due to Brown and Ravenhall. Bull. London Math. Soc., 30(3):283-290, 1998. | Zbl | MR