Self-similar solutions and Besov spaces for semi-linear Schrödinger and wave equations
Journées équations aux dérivées partielles (1999), article no. 9, 11 p.

Voir la notice de l'acte provenant de la source Numdam

We prove that the initial value problem for the semi-linear Schrödinger and wave equations is well-posed in the Besov space B ˙ 2 n 2-2 p, (𝐑 n ), when the nonlinearity is of type u p , for p𝐍. This allows us to obtain self-similar solutions, as well as to recover previously known results for the solutions under weaker smallness assumptions on the data.

@incollection{JEDP_1999____A9_0,
     author = {Planchon, Fabrice},
     title = {Self-similar solutions and {Besov} spaces for semi-linear {Schr\"odinger} and wave equations},
     booktitle = {},
     series = {Journ\'ees \'equations aux d\'eriv\'ees partielles},
     eid = {9},
     pages = {1--11},
     publisher = {Universit\'e de Nantes},
     year = {1999},
     zbl = {01810582},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JEDP_1999____A9_0/}
}
TY  - JOUR
AU  - Planchon, Fabrice
TI  - Self-similar solutions and Besov spaces for semi-linear Schrödinger and wave equations
JO  - Journées équations aux dérivées partielles
PY  - 1999
SP  - 1
EP  - 11
PB  - Université de Nantes
UR  - http://geodesic.mathdoc.fr/item/JEDP_1999____A9_0/
LA  - en
ID  - JEDP_1999____A9_0
ER  - 
%0 Journal Article
%A Planchon, Fabrice
%T Self-similar solutions and Besov spaces for semi-linear Schrödinger and wave equations
%J Journées équations aux dérivées partielles
%D 1999
%P 1-11
%I Université de Nantes
%U http://geodesic.mathdoc.fr/item/JEDP_1999____A9_0/
%G en
%F JEDP_1999____A9_0
Planchon, Fabrice. Self-similar solutions and Besov spaces for semi-linear Schrödinger and wave equations. Journées équations aux dérivées partielles (1999), article  no. 9, 11 p. http://geodesic.mathdoc.fr/item/JEDP_1999____A9_0/

[1] J. Bergh and J. Löfstrom. Interpolation Spaces, An Introduction. Springer-Verlag, 1976. | Zbl

[2] J.-M. Bony. Calcul symbolique et propagation des singularités dans les équations aux dérivées partielles non linéaires. Ann. Sci. Ecole Norm. Sup., 14:209-246, 1981. | Zbl | MR | mathdoc-id

[3] J. Bourgain. Refinements of Strichartz inequality and applications to 2-D NLS with critical nonlinearity. I.M.R.N., 5:253-283, 1998. | Zbl | MR

[4] M. Cannone. Ondelettes, Paraproduits et Navier-Stokes. Diderot Editeurs, Paris, 1995. | Zbl | MR

[5] T. Cazenave and F. Weissler. The Cauchy problem for the critical nonlinear Schrödinger equation in Hs. Nonlinear Anal. T.M.A., 14:807-836, 1990. | Zbl | MR

[6] T. Cazenave and F. Weissler. Asymptotically self-similar global solutions of the non linear Schrödinger and heat equations. Math. Zeit., 228:83-120, 1998. | Zbl | MR

[7] T. Cazenave and F. Weissler. More self-similar solutions of the nonlinear Schrödinger equation. No D.E.A., 5:355-365, 1998. | Zbl | MR

[8] J. Ginibre and Velo. The global Cauchy problem for the NLS equation revisited. Ann. IHP, An. non-linéaire, 2:309-327, 1985. | Zbl | MR | mathdoc-id

[9] M. Keel and T. Tao. Enpoint Strichartz estimates. American Journal of Mathematics, 120(5):955-980, 1998. | Zbl | MR

[10] H. Lindbladt and C. D. Sogge. On existence and scattering with minimal regularity for semilinear wave equations. J. funct. Anal., 130:357-426, 1995. | Zbl | MR

[11] R. O'Neil. Convolution operators and L(p,q) spaces. Duke Mathematical Journal, 30:129-142, 1963. | Zbl | MR

[12] F. Oru. Rôle des oscillations dans quelques problèmes d'analyse non-linéaire. PhD thesis, ENS Cachan, 1998.

[13] H. Pecher. Self-similar and asymptotically self-similar solutions of nonlinear wave equations. preprint. | Zbl

[14] J. Peetre. New thoughts on Besov Spaces. Duke Univ. Math. Series. Duke University, Durham, 1976. | Zbl | MR

[15] F. Planchon. On the Cauchy problem in Besov spaces for a non-linear Schrödinger equation. preprint. | Zbl

[16] F. Planchon. Self-similar solutions and semi-linear wave equations in Besov spaces. preprint. | Zbl

[17] F. Planchon. Asymptotic Behavior of Global Solutions to the Navier-Stokes Equations. Rev. Mat. Iberoamericana, 14(1), 1998. | Zbl | MR

[18] F. Planchon. Solutions autosimilaires et espaces de données initiales pour une équation de Schrödinger non-linéaire. C. R. Acad. Sci. Paris, 328, 1999. | Zbl | MR

[19] F. Ribaud and A. Youssfi. Self-similar solutions of nonlinear wave equation. preprint. | Zbl

[20] F. Ribaud and A. Youssfi. Regular and self-similar solutions of nonlinear Schrödinger equations. J. Math. Pures Appl., 9(10):1065-1079, 1998. | Zbl | MR

[21] F. Ribaud and A. Youssfi. Solutions globales et solutions auto-similaires de l'équation des ondes non linéaire. C. R. Acad. Sci. Paris, 328, 1999. | Zbl | MR

[22] R. Strichartz. Restriction of Fourier transform to quadratic surfaces and decay of solutions of the wave equations. Duke Mathematical Journal, 44:705-714, 1977. | Zbl | MR

[23] T. Tao. Low regularity semi-linear wave equations. Comm. in Partial Diff. Equations, 24(3&4):599-629, 1999. | Zbl | MR