Hyperbolicity of two by two systems with two independent variables
Journées équations aux dérivées partielles (1998), article no. 10, 12 p.

Voir la notice de l'acte provenant de la source Numdam

We study the simplest system of partial differential equations: that is, two equations of first order partial differential equation with two independent variables with real analytic coefficients. We describe a necessary and sufficient condition for the Cauchy problem to the system to be C infinity well posed. The condition will be expressed by inclusion relations of the Newton polygons of some scalar functions attached to the system. In particular, we can give a characterization of the strongly hyperbolic systems which includes a fortiori symmetrizable systems.

@incollection{JEDP_1998____A10_0,
     author = {Nishitani, Tatsuo},
     title = {Hyperbolicity of two by two systems with two independent variables},
     booktitle = {},
     series = {Journ\'ees \'equations aux d\'eriv\'ees partielles},
     eid = {10},
     pages = {1--12},
     publisher = {Universit\'e de Nantes},
     year = {1998},
     mrnumber = {2000k:35004},
     zbl = {01808719},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JEDP_1998____A10_0/}
}
TY  - JOUR
AU  - Nishitani, Tatsuo
TI  - Hyperbolicity of two by two systems with two independent variables
JO  - Journées équations aux dérivées partielles
PY  - 1998
SP  - 1
EP  - 12
PB  - Université de Nantes
UR  - http://geodesic.mathdoc.fr/item/JEDP_1998____A10_0/
LA  - en
ID  - JEDP_1998____A10_0
ER  - 
%0 Journal Article
%A Nishitani, Tatsuo
%T Hyperbolicity of two by two systems with two independent variables
%J Journées équations aux dérivées partielles
%D 1998
%P 1-12
%I Université de Nantes
%U http://geodesic.mathdoc.fr/item/JEDP_1998____A10_0/
%G en
%F JEDP_1998____A10_0
Nishitani, Tatsuo. Hyperbolicity of two by two systems with two independent variables. Journées équations aux dérivées partielles (1998), article  no. 10, 12 p. http://geodesic.mathdoc.fr/item/JEDP_1998____A10_0/

[1] V. Ya. Ivrii AND V.M. Petkov, Necessary conditions for the Cauchy problem for non strictly hyperbolic equations to be well posed, Russian Math. Surveys, 29 1974 1-70. | Zbl

[2] V. Ya. Ivrii, Linear Hyperbolic Equations, In Partial Differential Equations IV, Yu. V. Egorov, M.A. Shubin (eds.), Springer-Verlag 1993.

[3] P.D. Lax, Asymptotic solutions of oscillatory initial value problems, Duke Math. J., 24 1957 627-646. | Zbl | MR

[4] W. Matsumoto, On the conditions for the hyperbolicity of systems with double characteristic roots I, J. Math. Kyoto Univ., 21 1981 47-84. | Zbl | MR

[5] W. Matsumoto, On the conditions for the hyperbolicity of systems with double characteristic roots II, J. Math. Kyoto Univ., 21 1981 251-271. | Zbl | MR

[6] S. Mizohata, Some remarks on the Cauchy problem, J. Math. Kyoto Univ., 1 1961 109-127. | Zbl | MR

[7] T. Nishitani, The Cauchy problem for weakly hyperbolic equations of second order, Comm. P.D.E., 5 1980 1273-1296. | Zbl | MR

[8] T. Nishitani, A necessary and sufficient condition for the hyperbolicity of second order equations with two independent variables, J. Math. Kyoto Univ., 24 1984 91-104. | Zbl | MR

[9] P.D'Ancona AND S. Spagnolo, On pseudosymmetric hyperbolic systems, preprint 1997. | Zbl | MR

[10] J. Vaillant, Systèmes hyperboliques à multiplicité constante et dont le rang peut varier, In Recent developments in hyperbolic equations, pp. 340-366, L. Cattabriga, F. Colombini, M.K.V. Murthy, S. Spagnolo (eds.), Pitman Research Notes in Math. 183, Longman, 1988. | Zbl | MR