Mots-clés : global existence of solutions.
@article{JCEM_2018_5_4_a5,
author = {Yu. E. Gliklikh and N. V. Zakharov},
title = {On global in time existence of solutions to stochastic equations with backward mean derivatives},
journal = {Journal of computational and engineering mathematics},
pages = {64--69},
year = {2018},
volume = {5},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JCEM_2018_5_4_a5/}
}
TY - JOUR AU - Yu. E. Gliklikh AU - N. V. Zakharov TI - On global in time existence of solutions to stochastic equations with backward mean derivatives JO - Journal of computational and engineering mathematics PY - 2018 SP - 64 EP - 69 VL - 5 IS - 4 UR - http://geodesic.mathdoc.fr/item/JCEM_2018_5_4_a5/ LA - en ID - JCEM_2018_5_4_a5 ER -
%0 Journal Article %A Yu. E. Gliklikh %A N. V. Zakharov %T On global in time existence of solutions to stochastic equations with backward mean derivatives %J Journal of computational and engineering mathematics %D 2018 %P 64-69 %V 5 %N 4 %U http://geodesic.mathdoc.fr/item/JCEM_2018_5_4_a5/ %G en %F JCEM_2018_5_4_a5
Yu. E. Gliklikh; N. V. Zakharov. On global in time existence of solutions to stochastic equations with backward mean derivatives. Journal of computational and engineering mathematics, Tome 5 (2018) no. 4, pp. 64-69. http://geodesic.mathdoc.fr/item/JCEM_2018_5_4_a5/
[1] E. Nelson, “Derivation of the Schrödinger Equation from Newtonian Mechanics”, Physical Review, 150 (1966), 1079–1085 | DOI
[2] E. Nelson, Dynamical Theory of Brownian Motion, Princeton University Press, Princeton, NJ, 1967 | MR
[3] E. Nelson, Quantum Fluctuations, Princeton University Press, Princeton, NJ, 1985 | MR | Zbl
[4] Yu. E. Gliklikh, “Deterministic Viscous Hydrodynamics Via Stochastic Analysis on Groups of Diffeomorphisms”, Methods Funct. Anal. Topology, 9:3 (2003), 146–153 | MR | Zbl
[5] Yu. E. Gliklikh, Global and Stochastic Analysis with Applications to Mathematical Physics, Springer-Verlag, London, 2011 | DOI | MR | Zbl
[6] S. V. Azarina, Yu. E. Gliklikh, “Differential Inclusions with Mean Derivatives”, Dynamic Systems and Applications, 16:1 (2007), 49–71 | MR | Zbl
[7] K. R. Partasarati, Vvedenie v teoriyu veroyatnostei i teoriyu mery, Mir, M., 1988 [K. R. Parthasarathy, Introduction to Probability and Measure, Springer-Verlag, New York, 2005 ] | DOI | MR
[8] K. D. Elworthy, “Stochastic Differential Equations on Manifolds”, Probability Towards 2000, Lecture Notes in Statistics, 128, eds. L. Accardi, C. C. Heyde, Springer, New York, 1998, 165–178 | DOI | MR | Zbl