Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JCEM_2018_5_4_a3, author = {A. A. Zamyshlyaeva and O. N. Tsyplenkova}, title = {Optimal control of solutions to the {Showalter--Sidorov} problem in a model of linear waves in plasma}, journal = {Journal of computational and engineering mathematics}, pages = {46--57}, publisher = {mathdoc}, volume = {5}, number = {4}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JCEM_2018_5_4_a3/} }
TY - JOUR AU - A. A. Zamyshlyaeva AU - O. N. Tsyplenkova TI - Optimal control of solutions to the Showalter--Sidorov problem in a model of linear waves in plasma JO - Journal of computational and engineering mathematics PY - 2018 SP - 46 EP - 57 VL - 5 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JCEM_2018_5_4_a3/ LA - en ID - JCEM_2018_5_4_a3 ER -
%0 Journal Article %A A. A. Zamyshlyaeva %A O. N. Tsyplenkova %T Optimal control of solutions to the Showalter--Sidorov problem in a model of linear waves in plasma %J Journal of computational and engineering mathematics %D 2018 %P 46-57 %V 5 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/JCEM_2018_5_4_a3/ %G en %F JCEM_2018_5_4_a3
A. A. Zamyshlyaeva; O. N. Tsyplenkova. Optimal control of solutions to the Showalter--Sidorov problem in a model of linear waves in plasma. Journal of computational and engineering mathematics, Tome 5 (2018) no. 4, pp. 46-57. http://geodesic.mathdoc.fr/item/JCEM_2018_5_4_a3/
[1] A. G. Sveshnikov, A. B. Al’shin, M. O. Korpusov, Yu. D. Pletner, Linear and Nonlinear Equations of Sobolev Type, Fizmatlit Publ., Moscow, 2007
[2] A. A. Zamyshlyaeva, A. S. Muravyev, “Computational Experiment for One Mathematical Model of Ion-Acoustic Waves”, Bull. of SUSU. Ser. Mat. Model. Progr., 8:2 (2015), 127–132 | DOI | MR | Zbl
[3] A. A. Zamyshlyaeva, Linear Sobolev Type Equations of Higher Order, Publ. center of SUSU, Chelyabinsk, 2012 | MR
[4] S. A. Zagrebina, “On the Showalter–Sidorov Problem”, Russian Math. (Iz. VUZ), 51:3 (2007), 19–24 | DOI | MR | Zbl
[5] A. L. Shestakov, G. A. Sviridyuk, Yu. V. Khudyakov, “Dynamical Measurements in the View of the Group Operators Theory”, Semigroups of Operators – Theory and Applications, Proc. Int. Conference (Bedlewo, Poland, 2013, October 6–10), Springer Proceedings in Mathematics and Statistics, 113, eds. J. Banasiak, A. Bobrowski, M. Lachowicz, Springer International Publishing, 2015, 273–286 | DOI | MR | Zbl
[6] A. V. Keller, M. A. Sagadeeva, “The Optimal Measurement Problem for the Measurement Transducer Model with a Deterministic Multiplicative Effect and Inertia”, Bull. of SUSU. Ser. Mat. Model. Progr., 7:1 (2014), 134–138 | DOI | Zbl
[7] S. Zagrebina, M. Sagadeeva, “The Generalized Splitting Theorem for Linear Sobolev type Equations in Relatively Radial Case”, The Bulletin of Irkutsk State University. Series Mathematics, 7 (2014), 19–33 | Zbl
[8] N. A. Manakova, “Method of Decomposition in the Optimal Control Problem for Semilinear Sobolev Type Models”, Bull. of SUSU. Ser. Mat. Model. Progr., 8:2 (2015), 133–137 | DOI | Zbl
[9] A. Favini, G. A. Sviridyuk, A. A. Zamyshlyaeva, “One Class of Sobolev Type Equations of Higher Order with Additive “White Noise””, Communications on Pure and Applied Analysis, 15:1 (2016), 185–196 | DOI | MR | Zbl
[10] E. V. Bychkov, “On a Semilinear Sobolev-Type Mathematical Model”, Vestnik YuUrGU. Ser. Mat. Model. Progr., 7:2 (2014), 111–117 | DOI | Zbl
[11] G. A. Sviridyuk, A. A. Efremov, “Optimal Control of Sobolev-type Linear Equations with Relatively $p$-Spectorial Operators”, Differ. Equ., 31:11 (1995), 1882–1890 | MR | Zbl
[12] N. A. Manakova, “Optimal Control Problem for the Oskolkov Nonlinear Filtration Equation”, Differential Equations, 43:9 (2007), 1213–1221 | DOI | MR | Zbl
[13] J. L. Lyons, Optimal Control of Systems Described by Partial Differential Equations, Mir Publ., Moscow, 1972
[14] A. V. Fursikov, Optimal Control of Distributed Systems, Nauchnaya Kniga Publ., Novosibirsk, 1999
[15] G. A. Sviridyuk, V. E. Fedorov, Linear Sobolev Type Equations and Degenerate Semigroups of Operators, VSP, Utrecht, Boston, Köln, Tokyo, 2003 | MR | Zbl
[16] A. V. Keller, “Algoritm resheniya zadachi Shouoltera–Sidorova dlya modelei leontevskogo tipa”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 2011, no. 7, 40–46 | Zbl
[17] G. A. Sviridyuk, N. A. Manakova, “Dinamicheskie modeli sobolevskogo tipa s usloviem Shouoltera– Sidorova i additivnymi «shumami»”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 7:1 (2014), 90–103 | DOI | Zbl
[18] S. A. Zagrebina, M. A. Sagadeeva, “Obobschennaya zadacha Shouoltera – Sidorova dlya uravnenii sobolevskogo tipa s silno $(L,p)$-radialnym operatorom”, Vestnik MaGU. Matematika, 2006, no. 9, 17–27, MaGU, Magnitogorsk | Zbl
[19] A. A. Zamyshlyaeva, O. N. Tsyplenkova, E. V. Bychkov, “Optimal Control of Solutions to the Showalter–Sidorov Problem for the Sobolev Type Equation of Higher Order”, 2016 2nd International Conference on Industrial Engineering, Applications and Manufacturing, Proc. Int. Conference (Chelyabinsk, Russia, 2016, May 19–20), IEEE, 2016, 16838767 | DOI | MR
[20] A. A. Zamyshlyaeva, “Matematicheskie modeli sobolevskogo tipa vysokogo poryadka”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 7:2 (2014), 5–28 | DOI | Zbl
[21] A. A. Zamyshlyaeva, E. V. Bychkov, “The Cauchy Problem for the Sobolev Type Equation of Higher Order”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 11:1 (2018), 5–14 | DOI | MR | Zbl