Optimal control of solutions to the Showalter--Sidorov problem in a model of linear waves in plasma
Journal of computational and engineering mathematics, Tome 5 (2018) no. 4, pp. 46-57.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article an optimal control problem for a high order Sobolev type equation is investigated under the assumption that the operator pencil is relatively polynomially bounded. The results are applied to the study of the optimal control of the solutions to the Showalter–Sidorov problem for a model of linear waves in a plasma in an external magnetic field. Showalter-Sidorov conditions are a generalization of Cauchy conditions. As it is well known, the Cauchy problem for Sobolev type equations is fundamentally insoluble for arbitrary initial values. We use the phase space method developed by G. А. Sviridyuk, a theory of relatively polynomially bounded operator pencils developed by A. A. Zamyshlyaeva. The mathematical model considered in the article describes ion-acoustic waves in plasma in an external magnetic field and was first obtained by Yu. D. Pletner.
Keywords: Sobolev type equations of higher order, model of linear waves in plasma, Showalter–Sidorov problem, relatively polynomially bounded operator pencil, strong solutions, optimal control.
@article{JCEM_2018_5_4_a3,
     author = {A. A. Zamyshlyaeva and O. N. Tsyplenkova},
     title = {Optimal control of solutions to the {Showalter--Sidorov} problem in a model of linear waves in plasma},
     journal = {Journal of computational and engineering mathematics},
     pages = {46--57},
     publisher = {mathdoc},
     volume = {5},
     number = {4},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JCEM_2018_5_4_a3/}
}
TY  - JOUR
AU  - A. A. Zamyshlyaeva
AU  - O. N. Tsyplenkova
TI  - Optimal control of solutions to the Showalter--Sidorov problem in a model of linear waves in plasma
JO  - Journal of computational and engineering mathematics
PY  - 2018
SP  - 46
EP  - 57
VL  - 5
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCEM_2018_5_4_a3/
LA  - en
ID  - JCEM_2018_5_4_a3
ER  - 
%0 Journal Article
%A A. A. Zamyshlyaeva
%A O. N. Tsyplenkova
%T Optimal control of solutions to the Showalter--Sidorov problem in a model of linear waves in plasma
%J Journal of computational and engineering mathematics
%D 2018
%P 46-57
%V 5
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCEM_2018_5_4_a3/
%G en
%F JCEM_2018_5_4_a3
A. A. Zamyshlyaeva; O. N. Tsyplenkova. Optimal control of solutions to the Showalter--Sidorov problem in a model of linear waves in plasma. Journal of computational and engineering mathematics, Tome 5 (2018) no. 4, pp. 46-57. http://geodesic.mathdoc.fr/item/JCEM_2018_5_4_a3/

[1] A. G. Sveshnikov, A. B. Al’shin, M. O. Korpusov, Yu. D. Pletner, Linear and Nonlinear Equations of Sobolev Type, Fizmatlit Publ., Moscow, 2007

[2] A. A. Zamyshlyaeva, A. S. Muravyev, “Computational Experiment for One Mathematical Model of Ion-Acoustic Waves”, Bull. of SUSU. Ser. Mat. Model. Progr., 8:2 (2015), 127–132 | DOI | MR | Zbl

[3] A. A. Zamyshlyaeva, Linear Sobolev Type Equations of Higher Order, Publ. center of SUSU, Chelyabinsk, 2012 | MR

[4] S. A. Zagrebina, “On the Showalter–Sidorov Problem”, Russian Math. (Iz. VUZ), 51:3 (2007), 19–24 | DOI | MR | Zbl

[5] A. L. Shestakov, G. A. Sviridyuk, Yu. V. Khudyakov, “Dynamical Measurements in the View of the Group Operators Theory”, Semigroups of Operators – Theory and Applications, Proc. Int. Conference (Bedlewo, Poland, 2013, October 6–10), Springer Proceedings in Mathematics and Statistics, 113, eds. J. Banasiak, A. Bobrowski, M. Lachowicz, Springer International Publishing, 2015, 273–286 | DOI | MR | Zbl

[6] A. V. Keller, M. A. Sagadeeva, “The Optimal Measurement Problem for the Measurement Transducer Model with a Deterministic Multiplicative Effect and Inertia”, Bull. of SUSU. Ser. Mat. Model. Progr., 7:1 (2014), 134–138 | DOI | Zbl

[7] S. Zagrebina, M. Sagadeeva, “The Generalized Splitting Theorem for Linear Sobolev type Equations in Relatively Radial Case”, The Bulletin of Irkutsk State University. Series Mathematics, 7 (2014), 19–33 | Zbl

[8] N. A. Manakova, “Method of Decomposition in the Optimal Control Problem for Semilinear Sobolev Type Models”, Bull. of SUSU. Ser. Mat. Model. Progr., 8:2 (2015), 133–137 | DOI | Zbl

[9] A. Favini, G. A. Sviridyuk, A. A. Zamyshlyaeva, “One Class of Sobolev Type Equations of Higher Order with Additive “White Noise””, Communications on Pure and Applied Analysis, 15:1 (2016), 185–196 | DOI | MR | Zbl

[10] E. V. Bychkov, “On a Semilinear Sobolev-Type Mathematical Model”, Vestnik YuUrGU. Ser. Mat. Model. Progr., 7:2 (2014), 111–117 | DOI | Zbl

[11] G. A. Sviridyuk, A. A. Efremov, “Optimal Control of Sobolev-type Linear Equations with Relatively $p$-Spectorial Operators”, Differ. Equ., 31:11 (1995), 1882–1890 | MR | Zbl

[12] N. A. Manakova, “Optimal Control Problem for the Oskolkov Nonlinear Filtration Equation”, Differential Equations, 43:9 (2007), 1213–1221 | DOI | MR | Zbl

[13] J. L. Lyons, Optimal Control of Systems Described by Partial Differential Equations, Mir Publ., Moscow, 1972

[14] A. V. Fursikov, Optimal Control of Distributed Systems, Nauchnaya Kniga Publ., Novosibirsk, 1999

[15] G. A. Sviridyuk, V. E. Fedorov, Linear Sobolev Type Equations and Degenerate Semigroups of Operators, VSP, Utrecht, Boston, Köln, Tokyo, 2003 | MR | Zbl

[16] A. V. Keller, “Algoritm resheniya zadachi Shouoltera–Sidorova dlya modelei leontevskogo tipa”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 2011, no. 7, 40–46 | Zbl

[17] G. A. Sviridyuk, N. A. Manakova, “Dinamicheskie modeli sobolevskogo tipa s usloviem Shouoltera– Sidorova i additivnymi «shumami»”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 7:1 (2014), 90–103 | DOI | Zbl

[18] S. A. Zagrebina, M. A. Sagadeeva, “Obobschennaya zadacha Shouoltera – Sidorova dlya uravnenii sobolevskogo tipa s silno $(L,p)$-radialnym operatorom”, Vestnik MaGU. Matematika, 2006, no. 9, 17–27, MaGU, Magnitogorsk | Zbl

[19] A. A. Zamyshlyaeva, O. N. Tsyplenkova, E. V. Bychkov, “Optimal Control of Solutions to the Showalter–Sidorov Problem for the Sobolev Type Equation of Higher Order”, 2016 2nd International Conference on Industrial Engineering, Applications and Manufacturing, Proc. Int. Conference (Chelyabinsk, Russia, 2016, May 19–20), IEEE, 2016, 16838767 | DOI | MR

[20] A. A. Zamyshlyaeva, “Matematicheskie modeli sobolevskogo tipa vysokogo poryadka”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 7:2 (2014), 5–28 | DOI | Zbl

[21] A. A. Zamyshlyaeva, E. V. Bychkov, “The Cauchy Problem for the Sobolev Type Equation of Higher Order”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 11:1 (2018), 5–14 | DOI | MR | Zbl