Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JCEM_2018_5_4_a2, author = {A. A. Akimova and V. V. Tarkaev}, title = {Classification of prime virtual links of genus 1 with at most 4 classical crossings}, journal = {Journal of computational and engineering mathematics}, pages = {33--45}, publisher = {mathdoc}, volume = {5}, number = {4}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JCEM_2018_5_4_a2/} }
TY - JOUR AU - A. A. Akimova AU - V. V. Tarkaev TI - Classification of prime virtual links of genus 1 with at most 4 classical crossings JO - Journal of computational and engineering mathematics PY - 2018 SP - 33 EP - 45 VL - 5 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JCEM_2018_5_4_a2/ LA - en ID - JCEM_2018_5_4_a2 ER -
%0 Journal Article %A A. A. Akimova %A V. V. Tarkaev %T Classification of prime virtual links of genus 1 with at most 4 classical crossings %J Journal of computational and engineering mathematics %D 2018 %P 33-45 %V 5 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/JCEM_2018_5_4_a2/ %G en %F JCEM_2018_5_4_a2
A. A. Akimova; V. V. Tarkaev. Classification of prime virtual links of genus 1 with at most 4 classical crossings. Journal of computational and engineering mathematics, Tome 5 (2018) no. 4, pp. 33-45. http://geodesic.mathdoc.fr/item/JCEM_2018_5_4_a2/
[1] Yu. V. Drobotukhina, “Classification of links in $\mathbb{R}\mathrm{p}^3$ with at most 6 crossings”, Geometry and topology. Part 1, Zap. Nauchn. Sem. LOMI, 193, Nauka, Leningrad, 1991, 39–63 | MR | Zbl
[2] B. Gabrovšek, M. Mroczkowski, “Knots in the Solid Torus up to 6 Crossings”, Journal of Knot Theory and Its Ramifications, 21:11 (2012), 1250105 | DOI | MR
[3] B. Gabrovšek, “Tabulation of Prime Knots in Lens Spaces”, Mediterranean Journal of Mathematics, 14:2 (2017), 88 | DOI | Zbl
[4] S. V. Matveev, L. R. Nabeeva, “Tabulating Knots in the Thickened Klein Bottle”, Siberian Math. J., 57:3 (2016), 542–548 | DOI | DOI | MR | Zbl
[5] A. A. Akimova, S. V. Matveev, “Classification of Knots of Small Complexity in Thickened Tori”, Journal of Mathematical Sciences, 202:1 (2014), 1–12 | DOI | MR | Zbl
[6] A. A. Akimova, “Classification of Knots in the Thickened Torus with Minimal Diagrams which are not in a Circule and Have Five Crossings”, Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 5:1 (2013), 8–11 | MR | Zbl
[7] A. A. Akimova, “Classification of knots in a thickened torus with minimal octahedron diagrams which are not contained in an annulus”, Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 7:1 (2015), 5–10 | Zbl
[8] A. A. Akimova, S. V. Matveev, V. V. Tarkaev, “Classification of Links of Small Complexity in a Thickened Torus”, Proc. Steklov Inst. Math. (Suppl.), 303, suppl. 1 (2018), 12–24 | DOI | DOI | MR
[9] L. H. Kauffman, “Virtual Knot Theory”, Europ. J. Combinatorics, 20 (1999), 663–691 | DOI | MR
[10] J. Green, A Table of Virtual Knots } (accessed on 25 July 2018) {\tt http://katlas.math.toronto.edu/wiki/
[11] A. A. Akimova, S. V. Matveev, “Classification of Genus 1 Virtual Knots Having at Most Five Classical Crossings”, Journal of Knot Theory and Its Ramifications, 23:6 (2014), 1450031, 19 pp. | DOI | MR | Zbl
[12] G. Kuperberg, “What is a Virtual Link?”, Algebraic and Geometric Topology, 3 (2003), 587–591 | DOI | MR | Zbl
[13] S. V. Matveev, “Prime Decompositions of Knots in $T\times I$”, Topology and its Applications, 159:7 (2011), 1820–1824 | DOI | MR
[14] K. Alexander, A. J. Taylor, M. R. Dennis, “Proteins Analysed as Virtual Knots”, Scientific Reports, 7 (2017), 42300 | DOI
[15] V. Turaev, Knotoids, arXiv: (accessed on 25 July 2018) pdf/1002.4133
[16] N. Gügümü, L. H. Kauffman, New Invariants of Knotoids, arXiv: (accessed on 25 July 2018) pdf/1602.03579
[17] M. Jamroz, et al., Knotprot: a Database of Proteins with Knots and Slipknots } (accessed on 25 July 2018) {\tt http://knotprot.cent.uw.edu.pl/
[18] Nucleic Acids Res. } (accessed on 25 July 2018) {\tt https://linkprot.cent.uw.edu.pl/
[19] H. M. Berman, et al., The Protein Data Bank } (accessed on 25 July 2018) {\tt https://www.rcsb.org/