Critical states of thin underlayers under tensile afford
Journal of computational and engineering mathematics, Tome 5 (2018) no. 4, pp. 3-15.

Voir la notice de l'article provenant de la source Math-Net.Ru

Mathematical models of the stress state of plastic layers (interlayers) under the tensile load under plane deformation are investigated. The layer of rectangular shape is included in the strip of more durable material. The method of characteristics (slip lines) is used. The reasons that contact hardening is not fully realized are investigated. The characteristic fields in the layer in the process of loading are analyzed. The classification of characteristic fields at the critical moment of loading is given. The criterion for the full realization of contact hardening of the layer material is obtained. It depends on the relative thickness of the layer and the coefficient of mechanical heterogeneity of the joint. Explicit analytical expressions for calculating the critical load in the case of the full implementation of contact hardening are obtained.
Keywords: plastic layer, stress state, systems of nonlinear differential equations, contact hardening, coefficient of mechanical heterogeneity.
@article{JCEM_2018_5_4_a0,
     author = {V. L. Dilman and A. N. Dheyab},
     title = {Critical states of thin underlayers under tensile afford},
     journal = {Journal of computational and engineering mathematics},
     pages = {3--15},
     publisher = {mathdoc},
     volume = {5},
     number = {4},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JCEM_2018_5_4_a0/}
}
TY  - JOUR
AU  - V. L. Dilman
AU  - A. N. Dheyab
TI  - Critical states of thin underlayers under tensile afford
JO  - Journal of computational and engineering mathematics
PY  - 2018
SP  - 3
EP  - 15
VL  - 5
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCEM_2018_5_4_a0/
LA  - en
ID  - JCEM_2018_5_4_a0
ER  - 
%0 Journal Article
%A V. L. Dilman
%A A. N. Dheyab
%T Critical states of thin underlayers under tensile afford
%J Journal of computational and engineering mathematics
%D 2018
%P 3-15
%V 5
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCEM_2018_5_4_a0/
%G en
%F JCEM_2018_5_4_a0
V. L. Dilman; A. N. Dheyab. Critical states of thin underlayers under tensile afford. Journal of computational and engineering mathematics, Tome 5 (2018) no. 4, pp. 3-15. http://geodesic.mathdoc.fr/item/JCEM_2018_5_4_a0/

[1] L. Prandtl, “Beispiele der Anwendung des Hencky's Theorems zum Gleichgewicht der plastischen Körper”, Z. Angew. Math. Mech., 3:6 (1923), 401–406 | DOI | Zbl

[2] L. M. Kachanov, Fundamentals of the Theory of Plasticity, North-Holland Publishing Company, Amsterdam, 1971 | MR

[3] L. M. Kachanov, “On the Strained State of the Plastic Interlayer”, Math. USSR Academy of Sciences. Dep. Techn. Sciences. Mechanics and Mechanical Engineering, 1962, no. 5, 63–67 | Zbl

[4] K. Satoh, M. Toyoda, “Joint Strength of Heavy Plastics with Lower Strength Weld Metal”, Welding Journal, 1975, no. 9, 311–319

[5] E. P. Unksov, “Once Again About the Flat Sediment of a Strip Between Parallel Rough Plates”, Kuznechno-Pressovoe Proizvodstvo – Press Forging, 1980, no. 5, 18–20

[6] A. A. Ostsemin, V. L. Dilman, “Compression of a Plastic Layer by Two Rough Plates”, Strength of Materials, 22:7 (1990), 1076–1085 | DOI

[7] Y.-J. Kim, K.-H. Schwalbe, “Numerical Analysis of Strength Mis-match Effect on Local Stresses for Ideally Plastic Material”, Engineering Fracture Mechanics, 71:7-8 (2004), 1177–1199 | DOI

[8] S. Schnabl, M. Saje, G. Turk, I. Planinc, “Analytical Solution of Two-Layer Beam Taking into Account Interlayer Slip and Shear Deformation”, Journal of Structural Engineering, 133:6 (2007), 886–894 | DOI

[9] S. Schnabl, M. Saje, G. Turk, I. Planinc, “Analytical Solution of Two-Layer Beam Taking into Account Interlayer Slip and Shear Deformation”, Journal of Structural Engineering, 133:6 (2007), 886–894 | DOI

[10] D. Kozak, N. Gubeljak, P. Konjatić, J. Sertić, “Yield Load Solutions of Heterogeneous Welded Joints”, International Journal of Pressure Vessels and Piping, 86:12 (2009), 807–812 | DOI

[11] S. Alexandrov, D. Harris, “Geometry of Principal Stress Trajectories for a Mohr-Coulomb Material under Plane Strain”, Zeitschrift für Angewandte Mathematik und Mechanik, 97:4 (2017), 473–476 | DOI | MR

[12] S. Alexandrov, C. Y. Kuo, Y. R. Jeng, “A Numerical Method for Determining the Strain Rate Intensity Factor under Plane Strain Conditions”, Continuum Mechanics and Thermodynamics, 28:4 (2015), 977–992 | DOI | MR

[13] V. L. Dilman, T. V. Eroshkina, Mathematical Modeling of the Critical States of Soft Layers in Heterogeneous Joints, Publishing center of SUSU, Chelyabinsk, 2011

[14] V. L. Dilman, Mathematical Models of Non-uniform Strain State of Thin-Walled Cylindrical Shells, Publishing center of SUSU, Chelyabinsk, 2007

[15] V. L. Dilman, A. A. Ostsemin, “Effect of Stress Concentration in a Welded Seam on the Low-Cycle Fatigue of Large-Diameter Pipes”, Chemical and Petroleum Engineering, 39:5-6 (2003), 259–264

[16] V. L. Dil'man, T. V. Karpeta, “The Stress State of a Plastic Layer with a Variable Yield Strength under a Flat Deformation”, Russian Math. (Iz. VUZ), 57:8 (2013), 29–36 | DOI | MR | Zbl

[17] V. L. Dil'man, A. A. Ostsemin, “Analysis of the Ductile Strength of Welds Weakened by Notches in Longitudinally Welded Pipes of Large Diameter by the Method of Slip Lines”, Strength of Materials, 36:3 (2004), 274–281 | DOI