Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JCEM_2018_5_3_a5, author = {M. A. Sagadeeva and A. V. Generalov}, title = {Numerical solution for non-stationary linearized {Hoff} equation defined on geometrical graph}, journal = {Journal of computational and engineering mathematics}, pages = {61--74}, publisher = {mathdoc}, volume = {5}, number = {3}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JCEM_2018_5_3_a5/} }
TY - JOUR AU - M. A. Sagadeeva AU - A. V. Generalov TI - Numerical solution for non-stationary linearized Hoff equation defined on geometrical graph JO - Journal of computational and engineering mathematics PY - 2018 SP - 61 EP - 74 VL - 5 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JCEM_2018_5_3_a5/ LA - en ID - JCEM_2018_5_3_a5 ER -
%0 Journal Article %A M. A. Sagadeeva %A A. V. Generalov %T Numerical solution for non-stationary linearized Hoff equation defined on geometrical graph %J Journal of computational and engineering mathematics %D 2018 %P 61-74 %V 5 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/JCEM_2018_5_3_a5/ %G en %F JCEM_2018_5_3_a5
M. A. Sagadeeva; A. V. Generalov. Numerical solution for non-stationary linearized Hoff equation defined on geometrical graph. Journal of computational and engineering mathematics, Tome 5 (2018) no. 3, pp. 61-74. http://geodesic.mathdoc.fr/item/JCEM_2018_5_3_a5/
[1] N. A. Hoff, “Greep Buckling”, Journal of the Aeronautical Sciences, 7:1 (1965), 1–20
[2] G. A. Sviridyuk, V. E. Fedorov, Lineinye uravneniya sobolevskogo tipa, Chelyab. gos. un-t, Chelyabinsk, 2003, 179 pp. | MR
[3] A. L. Shestakov, G. A. Sviridyuk, E. V. Zakharova, “Dinamicheskie izmereniya kak zadacha optimalnogo upravleniya”, Obozrenie prikladnoi i promyshlennoi matematiki, 16:4 (2009), 732–733
[4] A. V. Keller, E. I. Nazarova, “Svoistvo regulyarizuemosti i chislennoe reshenie zadachi dinamicheskogo izmereniya”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 2010, no. 5, 32–38 | Zbl
[5] A. L. Shestakov, “Modalnyi sintez izmeritelnogo preobrazovatelya”, Izvestiya RAN. Teoriya i sistemy upravleniya, 1995, no. 4, 67–75
[6] A. L. Shestakov, A. V. Keller, G. A. Sviridyuk, “The Theory of Optimal Measurements”, J. Comp. Eng. Math., 1:1 (2014), 3–16 | Zbl
[7] A. L. Shestakov, G. A. Sviridyuk, Yu. V. Khudyakov, “Dinamicheskie izmereniya v prostranstvakh «shumov»”, Vestnik YuUrGU. Seriya: Kompyuternye tekhnologii, upravlenie, radioelektronika, 13:2 (2013), 4–11
[8] G. A. Sviridyuk, V. O. Kazak, “The Phase Space of an Initial-Boundary Value Problem for the Hoff Equation”, Math. Notes, 71:2 (2002), 262–266 | DOI | DOI | MR | Zbl
[9] G. A. Sviridyuk, N. A. Manakova, “An Optimal Control Problem for the Hoff Equation”, J. Appl. Industr. Math., 1:2 (2007), 247–253 | DOI | MR
[10] G. A. Sviridyuk, V. V. Shemetova, “Hoff Equations on Graphs”, Differ. Equ., 42:1 (2006), 139–145 | DOI | MR | Zbl
[11] G. A. Sviridyuk, S. A. Zagrebina, P. O. Pivovarova, “Ustoichivost uravnenii Khoffa na grafe”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 1 (20) (2010), 6–15 | DOI
[12] S. A. Zagrebina, “Mnogotochechnaya nachalno-konechnaya zadacha dlya lineinoi modeli Khoffa”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 2012, no. 11, 4–12 | Zbl
[13] N. A. Manakova, “An Optimal Control to Solutions of the Showalter – Sidorov Problem for the Hoff Model on the Geometrical Graph”, J. Comp. Eng. Math., 1:1 (2014), 26–33 | MR | Zbl
[14] N. A. Manakova, A. G. Dylkov, “Optimal Control of the Solutions of the Initial-Finish Problem for the Linear Hoff Model”, Math. Notes, 94:2 (2013), 220–230 | DOI | DOI | MR | Zbl
[15] M. A. Sagadeeva, Investigation of Solutions' Stability for Linear Sobolev Type Equations, Disertation of PhD (Math), Chelyabinsk, 2006, 120 pp.
[16] A. V. Keller, M. A. Sagadeeva, “The Optimal Measurement Problem for the Measurement Transducer Model with a Deterministic Multiplicative Effect and Inertia”, Vestnik YuUrGU. Ser. Mat. Model. Progr., 7:1 (2014), 134–138 | DOI | Zbl
[17] M. A. Sagadeeva, G. A. Sviridyuk, “The Nonautonomous Linear Oskolkov Model on a Geometrical Graph: the Stability of Solutions and Optimal Control Problem”, Semigroups of Operators – Theory and Applications, Proc. Int. Conference (Bedlewo, Poland, 2013, October 6–10), Springer Proceedings in Mathematics and Statistics, 113, eds. J. Banasiak, A. Bobrowski, M. Lachowicz, Springer International Publishing, 2015, 257–271 | DOI | MR | Zbl
[18] M. A. Sagadeeva, “Mathematical Bases of Optimal Measurements Theory in Nonstationary Case”, J. Comp. Eng. Math., 3:3 (2016), 19–32 | DOI | MR
[19] G. A. Sviridyuk, “Uravneniya sobolevskogo tipa na grafakh”, Neklassicheskie uravneniya matematicheskoi fiziki, Novosibirsk, 2002, 221–225 | Zbl
[20] S. A. Zagrebina, N. P. Solovyeva, “The Initial-Finish Problem for the Evolution of Sobolev-Type Equations on a Graph”, Bulletin of the South Ural State University. Series \flqq Mathematical Modelling, Programming Computer Software\frqq. Issue 1, 2008, no. 15 (115), 23–26 | Zbl
[21] A. A. Zamyshlyaeva, “On a Sobolev Type Equation Defined on the Graph”, Bulletin of the South Ural State University. Series \flqq Mathematical Modelling, Programming Computer Software\frqq. Issue 2, 2008, no. 27 (127), 45–49 | Zbl
[22] A. A. Zamyshlyaeva, A. V. Yuzeeva, “The Initial-Finish Value Problem for the Boussinesque–Löve Equation Defined on Graph”, IIGU Ser. Matematika, 3:2 (2010), 18–29 | MR
[23] A. G. Dylkov, “Numerical Solution of an Optimal Control Problem for One Linear Hoff Model Defined on Graph”, Vestnik YuUrGU. Ser. Mat. Model. Progr., 2012, no. 13, 128–132 | Zbl
[24] N. A. Manakova, K. V. Vasiuchkova, “Numerical Investigation for the Start Control and Final Observation Problem in Model of an I-beam Deformation”, J. Comp. Eng. Math., 4:2 (2017), 26–40 | DOI | MR
[25] A. A. Zamyshlyaeva, A. V. Lut, “Numerical Investigation of the Boussinesq–Love Mathematical Models on Geometrical Graphs”, Vestnik YuUrGU. Ser. Mat. Model. Progr., 10:2 (2017), 137–143 | DOI | Zbl