Propagation of a strong discontinuity in a binary mixture of gases
Journal of computational and engineering mathematics, Tome 5 (2018) no. 3, pp. 49-60.

Voir la notice de l'article provenant de la source Math-Net.Ru

Strong discontinuities – shock-waves – arise in a continuous media under dynamic external loads. Simulation of their propagation in mixtures must take into account, for each mixture component, the mass, momentum, and energy conservation laws relating states of matter before and behind the shock front. This effort calculates the process of shock-wave propagation in a plane layer, i.e. a homogeneous mixture of two gases having different density. For this purpose, conservation laws, as well as quantities responsible for components interaction were numerically implemented. The Lagrangian stage of the Lagrangian – Eulerian calculations used the shock-wave computation method based on the solution of the system of nonlinear algebraic equations. Sensitivity of flow parameters to the cluster and pairwise interactions is investigated. Cluster interaction was shown to be the major contributor to velocities relaxation behind the strong discontinuity front. Profiles of thermodynamic quantities and mass velocities were obtained for each component.
Keywords: multicomponent media, conservation laws, shock wave, Lagrangian – Eulerian scheme, cluster interaction.
@article{JCEM_2018_5_3_a4,
     author = {A. V. Krasilnikov and V. F. Kuropatenko},
     title = {Propagation of a strong discontinuity in a binary mixture of gases},
     journal = {Journal of computational and engineering mathematics},
     pages = {49--60},
     publisher = {mathdoc},
     volume = {5},
     number = {3},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JCEM_2018_5_3_a4/}
}
TY  - JOUR
AU  - A. V. Krasilnikov
AU  - V. F. Kuropatenko
TI  - Propagation of a strong discontinuity in a binary mixture of gases
JO  - Journal of computational and engineering mathematics
PY  - 2018
SP  - 49
EP  - 60
VL  - 5
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCEM_2018_5_3_a4/
LA  - en
ID  - JCEM_2018_5_3_a4
ER  - 
%0 Journal Article
%A A. V. Krasilnikov
%A V. F. Kuropatenko
%T Propagation of a strong discontinuity in a binary mixture of gases
%J Journal of computational and engineering mathematics
%D 2018
%P 49-60
%V 5
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCEM_2018_5_3_a4/
%G en
%F JCEM_2018_5_3_a4
A. V. Krasilnikov; V. F. Kuropatenko. Propagation of a strong discontinuity in a binary mixture of gases. Journal of computational and engineering mathematics, Tome 5 (2018) no. 3, pp. 49-60. http://geodesic.mathdoc.fr/item/JCEM_2018_5_3_a4/

[1] V. F. Kuropatenko, “New Models of Continuum Mechanics”, Journal of Engineering Physics and Thermophysics, 84:1 (2011), 77–99 | DOI

[2] Yu. M. Kovalev, V. F. Kuropatenko, “Analiz invariantnosti otnositelno preobrazovaniya Galileya nekotorykh matematicheskikh modelei mnogokomponentnykh sred”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 2012, no. 13, 69–73 | MR | Zbl

[3] V. F. Kuropatenko, E. S. Shestakovskaya, Osnovy chislennykh metodov mekhaniki sploshnoi sredy, Izdatelskii tsentr YuUrGU, Chelyabinsk, 2017

[4] V. F. Kuropatenko, “Ob odnom metode skvoznogo scheta udarnykh voln”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 7:1 (2014), 62–75 | DOI | Zbl

[5] V. F. Kuropatenko, Modeli mekhaniki sploshnykh sred, Chelyab. gos. un-t, Chelyabinsk, 2007