Analysis of algorithms for stable estimation of coefficients of multiple linear regression models
Journal of computational and engineering mathematics, Tome 5 (2018) no. 3, pp. 17-23.

Voir la notice de l'article provenant de la source Math-Net.Ru

Computational experiments on model data were performed in order to study the effectiveness of the algorithms for realization of the least absolute deviations (LAD) method and the generalized method of the least absolute deviations (GLAD) when estimating the parameters of multiple linear regression models based on descent through the nodal straight lines. In addition, a comparative analysis of the algorithms of descent through nodal straight lines for LAD and GLAD with known exact and approximate methods to solve tasks (2) and (3) was carried out.
Keywords: linear regression model, the least absolute deviations method, generalized, computational complexity, comparative analysis.
@article{JCEM_2018_5_3_a1,
     author = {A. A. Azaryan},
     title = {Analysis of algorithms for stable estimation of coefficients of multiple linear regression models},
     journal = {Journal of computational and engineering mathematics},
     pages = {17--23},
     publisher = {mathdoc},
     volume = {5},
     number = {3},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JCEM_2018_5_3_a1/}
}
TY  - JOUR
AU  - A. A. Azaryan
TI  - Analysis of algorithms for stable estimation of coefficients of multiple linear regression models
JO  - Journal of computational and engineering mathematics
PY  - 2018
SP  - 17
EP  - 23
VL  - 5
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCEM_2018_5_3_a1/
LA  - en
ID  - JCEM_2018_5_3_a1
ER  - 
%0 Journal Article
%A A. A. Azaryan
%T Analysis of algorithms for stable estimation of coefficients of multiple linear regression models
%J Journal of computational and engineering mathematics
%D 2018
%P 17-23
%V 5
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCEM_2018_5_3_a1/
%G en
%F JCEM_2018_5_3_a1
A. A. Azaryan. Analysis of algorithms for stable estimation of coefficients of multiple linear regression models. Journal of computational and engineering mathematics, Tome 5 (2018) no. 3, pp. 17-23. http://geodesic.mathdoc.fr/item/JCEM_2018_5_3_a1/

[1] E. Z. Demidenko, Lineinaya i nelineinaya regressiya, Finansy i statistika, M., 1981 | MR

[2] A. N. Tyrsin, Robastnaya parametricheskaya identifikatsiya modelei diagnostiki na osnove obobschennogo metoda naimenshikh modulei, disc. ... d-ra tekhn. nauk, Chelyabinsk, 2007

[3] V. I. Mudrov, V. L. Kushko, Metody obrabotki izmerenii. Kvazipravdopodobnye otsenki, Radio i svyaz, M., 1983

[4] A. N. Tyrsin, A. A. Azaryan, “Metody ustoichivogo postroeniya lineinykh modelei na osnove spuska po uzlovym pryamym”, Modeli, sistemy, seti v ekonomike, tekhnike, prirode i obschestve, 2018, no. 1, 188–202

[5] V. Pan, “On the Complexity of a Pivot Step of the Revised Simplex Algorithm”, Computers Mathematics with Applications, 11:11 (1985), 1127–1140 | DOI | MR | Zbl

[6] S. I. Zukhovitskii, L. I. Avdeeva, Lineinoe i vypukloe programmirovanie, FIZMATLIT, M., 1967

[7] P. A. Akimov, A. I. Matasov, “Levels of Nonoptimality of the Weiszfeld Algorithm in the Least-Modules Method”, Automation and Remote Control, 71:2 (2010), 172–184 | DOI | MR | Zbl

[8] A. V. Panteleev, T. A. Letova, Metody optimizatsii v primerakh i zadachakh, Vysshaya shkola, M., 2002

[9] A. N. Tyrsin, K. E. Maksimov, “Effektivnye vychislitelnye algoritmy postroeniya regressionnykh modelei na osnove obobschennogo metoda naimenshikh modulei”, Matematicheskoe modelirovanie i kraevye zadachi, trudy shestoi Vserossiiskoi nauchnoi konferentsii s mezhdunarodnym uchastiem (Samara, 1–4 iyunya 2009 g.), v. 4, Informatsionnye tekhnologii v matematicheskom modelirovanii, SamGTU, Samara, 2009, 137–139