Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JCEM_2018_5_2_a3, author = {A. S. Sheludko}, title = {On the accuracy and convergence of the minimax filtering algorithm for chaotic signals}, journal = {Journal of computational and engineering mathematics}, pages = {44--57}, publisher = {mathdoc}, volume = {5}, number = {2}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JCEM_2018_5_2_a3/} }
TY - JOUR AU - A. S. Sheludko TI - On the accuracy and convergence of the minimax filtering algorithm for chaotic signals JO - Journal of computational and engineering mathematics PY - 2018 SP - 44 EP - 57 VL - 5 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JCEM_2018_5_2_a3/ LA - en ID - JCEM_2018_5_2_a3 ER -
A. S. Sheludko. On the accuracy and convergence of the minimax filtering algorithm for chaotic signals. Journal of computational and engineering mathematics, Tome 5 (2018) no. 2, pp. 44-57. http://geodesic.mathdoc.fr/item/JCEM_2018_5_2_a3/
[1] O. A. Stepanov, “Kalman Filtering: Past and Present. An Outlook from Russia”, Gyroscopy and Navigation, 2:2 (2011), 99–110 | DOI
[2] T. Lefebvre, H. Bruyninckx, J. De Schutter, “Kalman Filters for Non-Linear Systems: A Comparison of Performance”, International Journal of Control, 77:7 (2004), 639–653 | DOI | MR | Zbl
[3] D. Simon, Optimal State Estimation: Kalman, H-infinity, and Nonlinear Approaches, John Wiley Sons, 2006 | DOI
[4] P. L. Combettes, “The Foundations of Set Theoretic Estimation”, Proceedings of the IEEE, 81:2 (1993), 182–208 | DOI
[5] F. Blanchini, S. Miani, Set-Theoretic Methods in Control, Birkhauser, 2015 | DOI | MR
[6] A. B. Kurzhanski, K. Sugimoto, I. Valyi, “Guaranteed State Estimation for Dynamical Systems: Ellipsoidal Techniques”, International Journal of Adaptive Control and Signal Processing, 8:1 (1994), 85–101 | DOI | MR | Zbl
[7] L. Chisci, A. Garulli, G. Zappa, “Recursive State Bounding by Parallelotopes”, Automatica, 32:7 (1996), 1049–1055 | DOI | MR
[8] M. Kieffer, L. Jaulin, E. Walter, “Guaranteed Recursive Nonlinear State Estimation Using Interval Analysis”, Proceedings of the IEEE Conference on Decision and Control, v. 4, 1998, 3966–3971 | DOI | MR
[9] T. Alamo, J.M. Bravo, E.F. Camacho, “Guaranteed State Estimation by Zonotopes”, Automatica, 41:6 (2005), 1035–1043 | DOI | MR | Zbl
[10] H. Leung, Z. Zhu, Z. Ding, “An Aperiodic Phenomenon of the Extended Kalman Filter in Filtering Noisy Chaotic Signals”, IEEE Transactions on Signal Processing, 48:6 (2000), 1807–1810 | DOI | MR | Zbl
[11] J. Feng, H. Fan, C.K. Tse, “Convergence Analysis of the Unscented Kalman Filter for Filtering Noisy Chaotic Signals”, Proceedings of the IEEE International Symposium on Circuits and Systems, 2007, 1681–1684 | DOI | MR
[12] S. Wang, J. Feng, C. K. Tse, “Analysis of the Characteristic of the Kalman Gain for 1-D Chaotic Maps in Cubature Kalman Filter”, IEEE Signal Processing Letters, 20:3 (2013), 229–232 | DOI | MR
[13] C. P. Silva, A. M. Young, “Introduction to Chaos-Based Communications and Signal Processing”, Proceedings of the IEEE Aerospace Conference, v. 1, 2000, 279–299 | DOI
[14] Y. V. Andreyev, A. S. Dmitriev, E. V. Efremova, A. N. Anagnostopoulos, “Chaotic Signal Processing: Information Aspects”, Chaos, Solitons Fractals, 17:2-3 (2003), 531–544 | DOI | Zbl
[15] J. C. Feng, C. K. Tse, Reconstruction of Chaotic Signals with Applications to Chaos-Based Communications, World Scientific, 2008 | DOI | MR
[16] T. Nakamura, Y. Hirata, K. Judd, D. Kilminster, M. Small, “Improved Parameter Estimation from Noisy Time Series for Nonlinear Dynamical Systems”, International Journal of Bifurcation and Chaos, 17:5 (2007), 1741–1752 | DOI | MR | Zbl
[17] R. L. Devaney, An Introduction to Chaotic Dynamical Systems, Addison-Wesley, 1989 | MR | Zbl
[18] A. S. Sheludko, V. I. Shiryaev, “Algoritm minimaksnoi filtratsii dlya odnomernogo khaoticheskogo protsessa”, Mekhatronika, avtomatizatsiya, upravlenie, 2014, no. 5, 8–12