Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JCEM_2018_5_2_a0, author = {V. G. Mokhov and V. I. Tsimbol}, title = {Electrical energy consumption prediction of the federal district of {Russia} on the based of the reccurent neural network}, journal = {Journal of computational and engineering mathematics}, pages = {3--15}, publisher = {mathdoc}, volume = {5}, number = {2}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JCEM_2018_5_2_a0/} }
TY - JOUR AU - V. G. Mokhov AU - V. I. Tsimbol TI - Electrical energy consumption prediction of the federal district of Russia on the based of the reccurent neural network JO - Journal of computational and engineering mathematics PY - 2018 SP - 3 EP - 15 VL - 5 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JCEM_2018_5_2_a0/ LA - en ID - JCEM_2018_5_2_a0 ER -
%0 Journal Article %A V. G. Mokhov %A V. I. Tsimbol %T Electrical energy consumption prediction of the federal district of Russia on the based of the reccurent neural network %J Journal of computational and engineering mathematics %D 2018 %P 3-15 %V 5 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/JCEM_2018_5_2_a0/ %G en %F JCEM_2018_5_2_a0
V. G. Mokhov; V. I. Tsimbol. Electrical energy consumption prediction of the federal district of Russia on the based of the reccurent neural network. Journal of computational and engineering mathematics, Tome 5 (2018) no. 2, pp. 3-15. http://geodesic.mathdoc.fr/item/JCEM_2018_5_2_a0/
[1] L. B. Melamed, N. I. Suslov, Ekonomika energetiki: osnovy teorii, Izdatelstvo SO RAN, Novosibirsk, 2000
[2] V. I. Mikhailov, Kontseptsiya rynochnykh reform v elektroenergetike Rossii, M-vo obrazovaniya Ros. Federatsii. Gos. un-t upr., M., 2001
[3] J. Nowotarski, E. Raviv, S. Trück, R. Weron, “An Empirical Comparison of Alternate Schemes for Combining Electricity Spot Price Forecasts”, Energy Economics, 46 (2014), 396–412 | DOI
[4] J. Bastian, J. Zhu, V. Banunarayanan, R. Mukerji, “Forecasting Energy Prices in a Competitive Market”, IEEE Computer Applications in Power, 12 (1999), 40–45 | DOI
[5] B. Yildiz, A. Yalama, M. Coskun, “Forecasting the Istanbul Stock Exchange National 100 Index Using an Artificial Neural Network”, An International Journal of Science, Engineering and Technology, 46 (2008), 36–39
[6] C. Robinson, “The Energy Market and Energy Planning”, Long Range Planning, 9:6 (1976), 30–38 | DOI
[7] A. Serletis, L. Xu, “Volatility and a Century of Energy Markets Dynamics”, Energy Economics, 55 (2016), 1–9 | DOI
[8] G. J. Osório, J. C. O. Matias, J. P. S. Catalão, “Electricity Prices Forecasting by a Hybrid Evolutionary-Adaptive Methodology”, Energy Conversion and Management, 80 (2014), 363–373 | DOI
[9] Y. Wang, C. Wu, “Forecasting Energy Market Volatility Using GARCH Models: Can Multivariate Models Beat Univariate Models?”, Energy Economics, 34:6 (2012), 2167–2181 | DOI
[10] O. Efimova, A. Serletis, “Energy Markets Volatility Modelling Using GARCH”, Energy Economics, 43 (2014), 264–273 | DOI
[11] C. Chiarella, L. Clewlow, B. Kang, “Modelling and Estimating the Forward Price Curve in the Energy Market”, Quantitative Finance Research Centre, 2009, no. 260, 1–17 | Zbl
[12] I. A. Chuchueva, Skolko stoit na OREM povyshenie tochnosti prognoza energopotrebleniya na 1 MVt, } (data obrascheniya: 11 maya 2018 g.) {\tt http://mbureau.ru/blog/skolko-stoit-na-orem-povyshenie-tochnosti-prognoza-energopotrebleniya-na-1-mvt
[13] I. A. Soloveva, Upravlenie zatratami na elektropotreblenie na promyshlennykh predpriyatiyakh v sovremennykh ekonomicheskikh usloviyakh, Izdatelskii tsentr YuUrGU, Chelyabinsk, 2017
[14] V. G. Mokhov, T. S. Demyanenko, “Modelling of the time series digressions by the example of the UPS of the Ural”, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 8:4 (2015), 127–130 | DOI
[15] C. Rodriguez, G. Anders, “Energy Price Forecasting in the Ontario Competitive Power System Market”, IEEE Transactions on Power Systems, 19:1 (2004), 366–374 | DOI
[16] S. Voronin, J. Partanen, “Price Forecasting in the Day-Ahead Energy Market by an Iterative Method with Separate Normal Price and Price Spike Frameworks”, Energies, 6:11 (2013), 5897–5920 | DOI
[17] J. Wang, J. Wang, “Forecasting Energy Market Indices with Recurrent Neural Networks: Case Study of Crude Oil Price Fluctuations”, Energy, 102 (2016), 365–374 | DOI
[18] A. Parida, R. Bisoi, P. Dash, “Chebyshev Polynomial Functions Based Locally Recurrent Neuro-Fuzzy Information System for Prediction of Financial and Energy Market Data”, Journal of Finance and Data Science, 2:3 (2016), 202–223 | DOI
[19] V. G. Mokhov, T. S. Demyanenko, K. V. Demyanenko, “Analysis of formalized methods for forecasting the volume of electricity consumption”, Journal of Computational and Engineering Mathematics, 4:4 (2017), 3–14 | DOI | MR
[20] Sistemnyi operator edinoi energeticheskoi sistemy, } (data obrascheniya: 11 maya 2018 g.) {\tt http://www.so-ups.ru
[21] National Oceanic and Atmospheric Administration } (accessed on May 11, 2018) {\tt http://www.noaa.gov
[22] Voskhod solntsa } (data obrascheniya: 11 maya 2018 g.) {\tt http://www.voshod-solnca.ru
[23] GARANT.RU Informatsionno-pravovoi portal } (data obrascheniya: 11 maya 2018 g.) {\tt https://www.garant.ru
[24] N. Sh. Kremer, B. A. Putko, Ekonometrika, Izd-vo YuNITI-DANA, M., 2010
[25] Python Data Analysis Library Pandas } (accessed on May 11, 2018) {\tt http://www.pandas.pydata.org
[26] TensorFlow } (accessed on May 11, 2018) {\tt https://www.tensorflow.org
[27] Keras Documentation } (accessed on May 11, 2018) {\tt http://www.keras.io
[28] I. A. Chuchueva, “Model ekstrapolyatsii vremennykh ryadov po vyborke maksimalnogo podobiya”, Informatsionnye tekhnologii, 2010, no. 12, 43–47