Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JCEM_2018_5_1_a5, author = {E. V. Kirillov and G. A. Zakirova}, title = {Spectral problem for a mathematical model of hydrodynamics}, journal = {Journal of computational and engineering mathematics}, pages = {51--56}, publisher = {mathdoc}, volume = {5}, number = {1}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JCEM_2018_5_1_a5/} }
TY - JOUR AU - E. V. Kirillov AU - G. A. Zakirova TI - Spectral problem for a mathematical model of hydrodynamics JO - Journal of computational and engineering mathematics PY - 2018 SP - 51 EP - 56 VL - 5 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JCEM_2018_5_1_a5/ LA - en ID - JCEM_2018_5_1_a5 ER -
E. V. Kirillov; G. A. Zakirova. Spectral problem for a mathematical model of hydrodynamics. Journal of computational and engineering mathematics, Tome 5 (2018) no. 1, pp. 51-56. http://geodesic.mathdoc.fr/item/JCEM_2018_5_1_a5/
[1] B. V. Lidskiy, “The Non-Self-Adjoint Operators Having a Trace”, Doklady AN SSSR, 125:3 (1959), 485–487 | MR
[2] V. A. Sadovnichii, S. V. Konyagin, V. E. Podolskii, “The Regularized Trace of an Operator Having a Nuclear Resolvent and Perturbed by A Bounded Operator”, Doklady Mathematics, 62:1 (2000), 19–21 | MR
[3] V. A. Sadovnichii, V. E. Podolskii, “Traces of operators with relatively compact perturbations”, Sb. Math., 193:2 (2002), 279–302 | DOI | DOI | MR | Zbl
[4] G. A. Zakirova, E. V. Kirillov, “L-regularized Trace of One of the Perturbed Operator”, Bulletin of Odessa National University. Mathematics and Mechanics, 18:2 (18) (2013), 7–13
[5] E. V. Kirillov, “The spectral identity for the operator with non-nuclear resolvent”, J. Comp. Eng. Math., 4:1 (2017), 69–75 | DOI | MR
[6] I. S. Strepetova, L. M. Fatkullina, G. A. Zakirova, “Spectral problems for one mathematical model of hydrodynamics”, J. Comp. Eng. Math., 4:1 (2017), 48–56 | DOI | MR
[7] G. A. Zakirova, A. I. Sedov, “Obratnaya spektralnaya zadcha dlya operatora Laplasa i ee priblizhennoe reshenie”, Vestnik YuUrGU. Seriya: Matematicheskoe modelirovanie i programmirovanie, 2:27 (127) (2008), 19–27 | Zbl
[8] V. A. Sadovnichii, V. V. Dubrovskii, “Ob odnoi abstraktnoi teoreme teorii vozmuschenii, o formulakh regulyarizovannykh sledov i o dzeta-funktsii operatorov”, Differents. uravneniya, 13:7 (1977), 1264–1271 | MR | Zbl
[9] E. V. Kirillov, G. A. Zakirova, “A direct spectral problem for $L$-spectrum of the perturbed operator with a multiple spectrum”, J. Comp. Eng. Math., 4:3 (2017), 19–26 | DOI | MR
[10] G. A. Sviridyuk, V. E. Fedorov, Linear Sobolev Type Equations and Degenerate Semigroups of Operators, VSP, Utrecht–Boston, 2003, viii+216 pp. | MR | Zbl