Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JCEM_2017_4_4_a2, author = {A. S. Sheludko}, title = {Nonlinear signal reconstruction based on the decomposition into chaotic components}, journal = {Journal of computational and engineering mathematics}, pages = {29--37}, publisher = {mathdoc}, volume = {4}, number = {4}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JCEM_2017_4_4_a2/} }
TY - JOUR AU - A. S. Sheludko TI - Nonlinear signal reconstruction based on the decomposition into chaotic components JO - Journal of computational and engineering mathematics PY - 2017 SP - 29 EP - 37 VL - 4 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JCEM_2017_4_4_a2/ LA - en ID - JCEM_2017_4_4_a2 ER -
A. S. Sheludko. Nonlinear signal reconstruction based on the decomposition into chaotic components. Journal of computational and engineering mathematics, Tome 4 (2017) no. 4, pp. 29-37. http://geodesic.mathdoc.fr/item/JCEM_2017_4_4_a2/
[1] L. A. Aguirre, C. Letellier, “Modeling Nonlinear Dynamics and Chaos: A Review”, Mathematical Problems in Engineering, 2009 (2009) | DOI | MR
[2] B. P. Bezruchko, D. A. Smirnov, Extracting Knowledge From Time Series. An Introduction to Nonlinear Empirical Modeling, Springer, Berlin, Heidelberg, 2010 | DOI | MR | Zbl
[3] J. M. T. Thompson, “Extracting Knowledge From Time Series. An Introduction to Nonlinear Empirical Modeling”, International Journal of Bifurcation and Chaos, 26:13 (2016) | DOI
[4] N. K. Vitanov, K. Sakai, Z. I. Dimitrova, “SSA, PCA, TDPSC, ACFA: Useful Combination of Methods for Analysis of Short and Nonstationary Time Series”, Chaos, Solitons Fractals, 37:1 (2008), 187–202 | DOI
[5] L. Ljung, “Perspectives on System Identification”, Annual Reviews in Control, 34:1 (2010), 1–12 | DOI | MR
[6] J. C. Sprott, Chaos and Time-Series Analysis, Oxford University Press, Oxford, 2003 | MR | Zbl
[7] V. I. Shiryaev, E. O. Podivilova, “Set-valued Estimation of Linear Dynamical System State When Disturbance is Decomposed as a System of Functions”, Procedia Engineering, 129 (2015), 252–258 | DOI
[8] E. I. Malyutina, V. I. Shiryaev, “Time Series Forecasting Using Nonlinear Dynamic Methods and Identification of Deterministic Chaos”, Procedia Computer Science, 31 (2014), 1022–1031 | DOI
[9] R. L. Devaney, An Introduction to Chaotic Dynamical Systems, Westview Press, 1989 | MR | Zbl
[10] M. M. Dubovikov, N. V. Starchenko, M. S. Dubovikov, “Dimension of the Minimal Cover and Fractal Analysis of Time Series”, Physica A, 339 (2004), 591–608 | DOI | MR
[11] V. S. Anishchenko, T. E. Vadivasova, G. A. Okrokvertskhov, G. I. Strelkova, “Correlation Analysis of Dynamical Chaos”, Physica A, 325 (2003), 199–212 | DOI | MR | Zbl
[12] A. Erramilli, R. P. Singh, P. Pruthi, “An Application of Deterministic Chaotic Maps to Model Packet Traffic”, Queueing Systems, 20 (1995), 171–206 | DOI | MR | Zbl
[13] M. A. Jafarizadeh, S. Behnia, S. Khorram, H. Nagshara, “Hierarchy of Chaotic Maps with an Invariant Measure”, Journal of Statistical Physics, 104 (2001), 1013–1028 | DOI | MR | Zbl
[14] S. Jafari, V.-T. Pham, S. M. R. H. Golpayegani et al., “The Relationship Between Chaotic Maps and Some Chaotic Systems with Hidden Attractors”, International Journal of Bifurcation and Chaos, 26:13 (2016) | DOI | MR
[15] A. A. Kipchatov, E. L. Kozlenko, “Reconstruction of Chaotic Oscillations After Passage Through Linear Filters”, Technical Physics Letters, 25:2 (1999), 148–150 | DOI
[16] D. Simon, Optimal State Estimation: Kalman, H-infinity, and Nonlinear Approaches, Wiley, Hoboken, NJ, 2006
[17] A. Banerjee, I. Abu-Mahfouz, “Comparative Analysis of Particle Swarm Optimization and Differential Evolution Algorithms for Parameter Estimation in Nonlinear Dynamic Systems”, Chaos, Solitons Fractals, 58 (2014), 65–83 | DOI | MR | Zbl
[18] Y. Jiang, F. C. M. Lau, S. Wang, C. K. Tse, “Parameter Identification of Chaotic Systems by a Novel Dual Particle Swarm Optimization”, International Journal of Bifurcation and Chaos, 26:2 (2016) | DOI | MR
[19] A. Gotmare, S. S. Bhattacharjee, R. Patidar, N. V. George, “Swarm and Evolutionary Computing Algorithms for System Identification and Filter Design: A Comprehensive Review”, Swarm and Evolutionary Computation, 32 (2017), 68–84 | DOI