Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JCEM_2017_4_3_a5, author = {A. Yu. Evnin and N. I. Yusova}, title = {An approximation algorithm for the maximum traveling salesman problem}, journal = {Journal of computational and engineering mathematics}, pages = {49--54}, publisher = {mathdoc}, volume = {4}, number = {3}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JCEM_2017_4_3_a5/} }
TY - JOUR AU - A. Yu. Evnin AU - N. I. Yusova TI - An approximation algorithm for the maximum traveling salesman problem JO - Journal of computational and engineering mathematics PY - 2017 SP - 49 EP - 54 VL - 4 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JCEM_2017_4_3_a5/ LA - en ID - JCEM_2017_4_3_a5 ER -
A. Yu. Evnin; N. I. Yusova. An approximation algorithm for the maximum traveling salesman problem. Journal of computational and engineering mathematics, Tome 4 (2017) no. 3, pp. 49-54. http://geodesic.mathdoc.fr/item/JCEM_2017_4_3_a5/
[1] A. I. Barvinok, D. S. Johnson, G. J. Woeginger, R. Woodroofe, “The Maximum Traveling Salesman Problem Under Polyhedral Norms”, IPCO VI LNCS, 1412 (1998), 195–201 | DOI | MR | Zbl
[2] R. Hassin, S. Rubinstein, “An Approximation Algorithm for the Maximum Traveling Salesman Problem”, Information Processing Letters, 67:3 (1998), 125–130 | DOI | MR | Zbl
[3] A. I. Serdyukov, “Algoritm s otsenkoi dlya zadachi kommivoyazhera na maksimum”, Upravlyaemye sistemy, 25 (1984), 80–86 | MR | Zbl
[4] A. V. Kostochka, A. I. Serdyukov, “Polinomialnye algoritmy s otsenkami 3/4 i 5/6 dlya zadachi kommivoyazhera na maksimum”, Upravlyaemye sistemy, 26 (1985), 55–59
[5] G. Gutin, A. P. Punnen, The Traveling Salesman Problem and Its Variations, Kluwer Academic Publishers, Boston–Dordrecht–London, 2002 | MR | Zbl