Algorithm for products final consumption structure analysis in degenerate dynamic input--output model
Journal of computational and engineering mathematics, Tome 4 (2017) no. 3, pp. 35-48.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article presents an algorithm for products final consumption structure analysis. Such an algorithm for the base year allows to correctly determine the column-vector of final consumption of products in Degenerate Dynamic Input-Output Model of enterprise. The main idea of the algorithm is to include in the structure of the column-vector not only external but also internal trade turnover. This will increase the adequacy of this mathematical model. To characterize the efficiency of the proposed algorithm, it is necessary to study the conditionality and productivity of the obtained models in two cases: using the existing (first case) and author's methods (second case) at the formation of the final consumption vector. The study showed that the author's method, in a number of cases, allows to obtain well conditioned and productive model. Qualitative assessment of this statement is confirmed by the examples shown. The article also suggests an algorithm for final consumption vector-function finding in the model for the reporting year. An indicator of the adequacy of such a function has also been determined.
Keywords: final consumption, degenerate dynamic input-output model, condition number, productivity level of the enterprise input–output model.
@article{JCEM_2017_4_3_a4,
     author = {T. A. Vinogradova},
     title = {Algorithm for products final consumption structure analysis in degenerate dynamic input--output model},
     journal = {Journal of computational and engineering mathematics},
     pages = {35--48},
     publisher = {mathdoc},
     volume = {4},
     number = {3},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JCEM_2017_4_3_a4/}
}
TY  - JOUR
AU  - T. A. Vinogradova
TI  - Algorithm for products final consumption structure analysis in degenerate dynamic input--output model
JO  - Journal of computational and engineering mathematics
PY  - 2017
SP  - 35
EP  - 48
VL  - 4
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCEM_2017_4_3_a4/
LA  - en
ID  - JCEM_2017_4_3_a4
ER  - 
%0 Journal Article
%A T. A. Vinogradova
%T Algorithm for products final consumption structure analysis in degenerate dynamic input--output model
%J Journal of computational and engineering mathematics
%D 2017
%P 35-48
%V 4
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCEM_2017_4_3_a4/
%G en
%F JCEM_2017_4_3_a4
T. A. Vinogradova. Algorithm for products final consumption structure analysis in degenerate dynamic input--output model. Journal of computational and engineering mathematics, Tome 4 (2017) no. 3, pp. 35-48. http://geodesic.mathdoc.fr/item/JCEM_2017_4_3_a4/

[1] E. L. Toroptsev, T. V. Tatochenko, “Modelirovanie ustoichivosti i ekonomicheskogo rosta v usloviyakh neopredelennosti parametrov mezhotraslevykh modelei”, Sovremennaya ekonomika: problemy i resheniya, 2013, no. 6, 137–148

[2] A. S. Marakhovskii, “Mezhotraslevaya balansovaya model kak effektivnyi instrument indikativnogo planirovaniya sbalansirovannogo rosta”, Vestnik Stavropolskogo gosudarstvennogo universiteta, 2006, no. 44, 49–56

[3] T. Wiedmann, “Review of Recent Multi-Region Input-Output Models Used for Consumption-Based Emission and Resource Accounting”, Ecological Economics, 69:2 (2009), 211–222 | DOI

[4] Yu. E. Boyarintsev, V. F. Chistyakov, Algebro-differentsialnye sistemy. Metody resheniya i issledovaniya, Hauka, Novosibirsk, 1998, 224 pp. | MR

[5] Russian Math. (Iz. VUZ), 47:8 (2003), 44–50 | MR | Zbl

[6] V. V. Leontieff, Input-Output Economics, Oxford Univesity Press, Oxford, 1984, 448 pp.

[7] P. T. Voronkov, D. V. Ruzakov, “Sovershenstvovanie planirovaniya rezultatov i zatrat lesozagotovitelnogo proizvodstva na osnove metoda "zatrat-vypusk"”, Vestnik Moskovskogo gosudarstvennogo universiteta lesa – Lesnoi vestnik, 2001, no. 4, 190–193

[8] M. I. Letavin, S. A. Makarova, “Dinamicheskaya balansovaya model ekonomicheskoi deyatelnosti predpriyatiya”, Ekonomika, 2009, no. 4, 46–50

[9] A. A. Banin, M. I. Letavin, “Primenenie balansovoi modeli v analize deyatelnosti predpriyatiya”, Ekonomika i matematicheskie metody, 2002, no. 4, 67–73

[10] A. V. Keller, Chislennoe issledovanie zadach optimalnogo upravleniya dlya modelei leontevskogo tipa, avtoreferat diss. ... dokt. fiz.-mat. nauk, Chelyabinsk, 2011, 249 pp.

[11] A. V. Keller, T. A. Shishkina, “Metodika postroeniya staticheskoi i dinamicheskoi balansovoi modeli na urovne predpriyatiya”, Vestnik YuUrGU. Seriya: Ekonomika i menedzhment, 7:3 (2013), 6–11

[12] A. V. Keller, T. A. Shishkina, “Ispolzovanie bukhgalterskoi otchetnosti kak osnovy postroeniya dinamicheskoi balansovoi modeli dlya predpriyatiya”, Sovremennaya ekonomika: problemy i resheniya, 2014, no. 9 (59), 8–19 !

[13] A. V. Keller, T. A. Shishkina, “Chislo obuslovlennosti kak neobkhodimoe uslovie adekvatnosti dinamicheskoi balansovoi modeli”, Yuzhno-Uralskaya molodezhnaya shkola po matematicheskomu modelirovaniyu (Chelyabinsk, 2014), Sbornik trudov Vserossiiskoi nauchno-prakticheskoi konferentsii, Izd.tsentr YuUrGU, Chelyabinsk, 2014, 66–69

[14] D. K. Faddeev, V. N. Faddeeva, Vychislitelnye metody lineinoi algebry, Fizmatgiz, M., L., 1963, 743 pp. | MR

[15] R. Tsei, M. M. Shumafov, “Chislo obuslovlennosti matritsy kak pokazatel ustoichivosti pri reshenii prikladnykh zadach”, Trudy FORA, 2011, no. 11, 61–67

[16] A. G. Granberg, Dinamicheskie modeli narodnogo khozyaistva, Ekonomika, M., 1985, 240 pp.