Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JCEM_2017_4_3_a2, author = {E. V. Kirillov and G. A. Zakirova}, title = {A direct spectral problem for $L$-spectrum of the perturbed operator with a multiple spectrum}, journal = {Journal of computational and engineering mathematics}, pages = {19--26}, publisher = {mathdoc}, volume = {4}, number = {3}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JCEM_2017_4_3_a2/} }
TY - JOUR AU - E. V. Kirillov AU - G. A. Zakirova TI - A direct spectral problem for $L$-spectrum of the perturbed operator with a multiple spectrum JO - Journal of computational and engineering mathematics PY - 2017 SP - 19 EP - 26 VL - 4 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JCEM_2017_4_3_a2/ LA - en ID - JCEM_2017_4_3_a2 ER -
%0 Journal Article %A E. V. Kirillov %A G. A. Zakirova %T A direct spectral problem for $L$-spectrum of the perturbed operator with a multiple spectrum %J Journal of computational and engineering mathematics %D 2017 %P 19-26 %V 4 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/JCEM_2017_4_3_a2/ %G en %F JCEM_2017_4_3_a2
E. V. Kirillov; G. A. Zakirova. A direct spectral problem for $L$-spectrum of the perturbed operator with a multiple spectrum. Journal of computational and engineering mathematics, Tome 4 (2017) no. 3, pp. 19-26. http://geodesic.mathdoc.fr/item/JCEM_2017_4_3_a2/
[1] B. V. Lidskiy, “The Non-Self-Adjoint Operators Having a Trace”, Doklady AN SSSR, 125:3 (1959), 485–487 | MR
[2] V. A. Sadovnichii, S. V. Konyagin, V. E. Podolskii, “The Regularized Trace of an Operator Having a Nuclear Resolvent and Perturbed by A Bounded Operator”, Doklady Mathematics, 62:1 (2000), 19–21 | MR
[3] V. A. Sadovnichii, V. E. Podolskii, “Traces of operators with relatively compact perturbations”, Sb. Math., 193:2 (2002), 279–302 | DOI | DOI | MR | Zbl
[4] G. A. Zakirova, E. V. Kirillov, “L-regularized Trace of One of the Perturbed Operator”, Bulletin of Odessa National University. Mathematics and Mechanics, 18:2 (18) (2013), 7–13
[5] E. V. Kirillov, “The spectral identity for the operator with non-nuclear resolvent”, J. Comp. Eng. Math., 4:1 (2017), 69–75 | DOI | MR
[6] I. S. Strepetova, L. M. Fatkullina, G. A. Zakirova, “Spectral problems for one mathematical model of hydrodynamics”, J. Comp. Eng. Math., 4:1 (2017), 48–56 | DOI | MR
[7] G. A. Zakirova, A. I. Sedov, “An Inverse Spectral Problem for Laplace Operator and it's Approximate Solution”, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 2:27 (127) (2008), 19–27 | Zbl
[8] V. A. Sadovnichii, V. V. Dubrovskii, “Ob odnoi abstraktnoi teoreme teorii vozmuschenii, o formulakh regulyarizovannykh sledov i o dzeta-funktsii operatorov”, Differents. uravneniya, 13:7 (1977), 1264–1271 | MR | Zbl
[9] G. A. Sviridyuk, V. E. Fedorov, Linear Sobolev Type Equations and Degenerate Semigroups of Operators, VSP, Utrecht–Boston, 2003, viii+216 pp. | MR | Zbl