Sobolev type equation in $(n, p)$-sectorial case
Journal of computational and engineering mathematics, Tome 4 (2017) no. 2, pp. 66-72.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a mathematical model of thermoelastic plate vibrations under certain assumptions. The model is based on the nonclassical high-order equation of the mathematical physics. In addition, this equation is unsolvable with respect to the time derivative of higher order. In appropriately chosen functional spaces, the considered mathematical model can be reduced to an abstract Sobolev type equation of the third order with relatively $(n, p)$-sectorial operator on the right-hand side. As is known, an equation of Sobolev type is not solvable for arbitrary initial values. Therefore, we construct a set of admissible initial values. The main research approach is the method to construct resolving groups.
Keywords: Sobolev type equation, relatively spectral-bounded operator, bundle of operators, mathematical model of thermoelastic plate vibrations.
@article{JCEM_2017_4_2_a6,
     author = {E. V. Bychkov and K. Yu. Kotlovanov},
     title = {Sobolev type equation in $(n, p)$-sectorial case},
     journal = {Journal of computational and engineering mathematics},
     pages = {66--72},
     publisher = {mathdoc},
     volume = {4},
     number = {2},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JCEM_2017_4_2_a6/}
}
TY  - JOUR
AU  - E. V. Bychkov
AU  - K. Yu. Kotlovanov
TI  - Sobolev type equation in $(n, p)$-sectorial case
JO  - Journal of computational and engineering mathematics
PY  - 2017
SP  - 66
EP  - 72
VL  - 4
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCEM_2017_4_2_a6/
LA  - en
ID  - JCEM_2017_4_2_a6
ER  - 
%0 Journal Article
%A E. V. Bychkov
%A K. Yu. Kotlovanov
%T Sobolev type equation in $(n, p)$-sectorial case
%J Journal of computational and engineering mathematics
%D 2017
%P 66-72
%V 4
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCEM_2017_4_2_a6/
%G en
%F JCEM_2017_4_2_a6
E. V. Bychkov; K. Yu. Kotlovanov. Sobolev type equation in $(n, p)$-sectorial case. Journal of computational and engineering mathematics, Tome 4 (2017) no. 2, pp. 66-72. http://geodesic.mathdoc.fr/item/JCEM_2017_4_2_a6/

[1] M. V. Falaleev, A. V. Krasnik, S. S. Orlov, “Vyrozhdennye differentsialnye uravneniya vysokikh poryadkov spetsialnogo vida v banakhovykh prostranstvakh i ikh prilozheniya”, Sib. zhurn. industr. matem., 13:3 (2010), 126–139 | MR | Zbl

[2] G. A. Sviridyuk, “On the general theory of operator semigroups”, Russian Math. Surveys, 49:4 (1994), 45–74 | DOI | MR | Zbl

[3] G. A. Sviridyuk, “Phase portraits of Sobolev-type semilinear equations with a relatively strongly sectorial operator”, St. Petersburg Math. J., 6:5 (1995), 1109–1126 | MR | Zbl

[4] G. A. Sviridyuk, V. E. Fedorov, Linear Sobolev Type Equations and Degenerate Semigroups of Operators, Inverse and Ill-Posed Problems Series, 42, de Grutyer, 2012, 216+viii pp. | DOI | MR

[5] G. A. Sviridyuk, M. M. Yakupov, “The phase space of the initial-boundary value problem for the Oskolkov system”, Differ. Equ., 32:11 (1996), 1535–1540 | MR | Zbl

[6] G. A. Sviridyuk, A. A. Zamyshlyaeva, “The phase spaces of a class of linear higher-order Sobolev type equations”, Differ. Equ., 42:2 (2006), 269–278 | DOI | MR | Zbl

[7] N. A. Manakova, G. A. Sviridyuk, “Neklassicheskie uravneniya matematicheskoi fiziki. Fazovye prostranstva polulineinykh uravnenii sobolevskogo tipa”, Vestn. Yuzhno-Ur. un-ta. Ser. Matem. Mekh. Fiz., 8:3 (2016), 31–51 | DOI

[8] S. A. Zagrebina, M. A. Sagadeeva, Ustoichivye i neustochivye mnogoobraziya reshenii polulineinykh uravnenii sobolevskogo tipa, Izd. tsentr YuUrGU, Chelyabinsk, 2016 | MR

[9] A. A. Zamyshlyaeva, “Ob analiticheskom issledovanii matematicheskoi modeli Benni – Lyuka”, Matematicheskie zametki Severo-Vostochnogo federalnogo universiteta, 20:2 (2013), 57–65 | MR | Zbl

[10] A. A. Zamyshlyaeva, “Fazovoe prostranstvo uravneniya sobolevskogo tipa vysokogo poryadka”, Izv. Irkutskogo gos. un-ta. Ser. Matematika, 4:4 (2011), 45–57 | MR | Zbl