Mots-clés : Sobolev type equations
@article{JCEM_2017_4_2_a3,
author = {P. O. Moskvicheva},
title = {A numerical experiment for the {Barenblatt} {\textendash} {Zheltov} {\textendash} {Kochina} equation in a bounded domain},
journal = {Journal of computational and engineering mathematics},
pages = {41--48},
year = {2017},
volume = {4},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JCEM_2017_4_2_a3/}
}
TY - JOUR AU - P. O. Moskvicheva TI - A numerical experiment for the Barenblatt – Zheltov – Kochina equation in a bounded domain JO - Journal of computational and engineering mathematics PY - 2017 SP - 41 EP - 48 VL - 4 IS - 2 UR - http://geodesic.mathdoc.fr/item/JCEM_2017_4_2_a3/ LA - en ID - JCEM_2017_4_2_a3 ER -
P. O. Moskvicheva. A numerical experiment for the Barenblatt – Zheltov – Kochina equation in a bounded domain. Journal of computational and engineering mathematics, Tome 4 (2017) no. 2, pp. 41-48. http://geodesic.mathdoc.fr/item/JCEM_2017_4_2_a3/
[1] G. I. Barenblatt, Yu. P. Zheltov, I. N. Kochina, “Basic Concepts in the Theory of Seepage of Homogeneous Fluids in Fissurized Rocks [Strata]”, Journal of Applied Mathematics and Mechanics, 24:5 (1960), 1286–1303 | DOI | Zbl
[2] M. Hallaire, “On a theory of moisture-transfer”, Inst. Rech. Agronom., 1964, no. 3, 60–72
[3] P. J. Chen, M. E. Gurtin, “On a theory of heat conduction involving two temperatures”, Z. Angew. Math. Phys., 19 (1968), 614–627 | DOI | Zbl
[4] A. V. Keller, Issledovanie ogranichennykh reshenii lineinykh uravnenii tipa Soboleva, diss. ...kand. fiz.-matem. nauk, Chelyabinsk, 1997, 115 pp.
[5] G. A. Sviridyuk, A. V. Keller, “Invariant spaces and dichotomies of solutions of a class of linear equations of the Sobolev type”, Russian Math. (Iz. VUZ), 41:5 (1997), 57–65 | MR | Zbl
[6] A. S. Shipilov, “Ob ustoichivosti reshenii uravnenii Barenblatta–Zheltova–Kochinoi na geometricheskom grafe”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 2008, no. 1, 106–110 | Zbl
[7] S. A. Zagrebina, P. O. Pivovarova, “Vtoroi metod lyapunova v normalizovannykh prostranstvakh”, Voronezhskaya zimnyaya matematicheskaya shkola S. G. Kreina – 2010, Materialy mezhdunarodnoi konferentsii, Voronezh, 2010, 50–60
[8] G. A. Sviridyuk, V. E. Fedorov, Linear Sobolev Type Equations and Degenerate Semigroups of Operators, v. 42, Inverse and Ill-Posed Problems Series, de Gruyer, 2012, 216+viii pp. | DOI | MR
[9] G. A. Sviridyuk, M. M. Yakupov, “The phase space of the initial-boundary value problem for the Oskolkov system”, Differ. Equ., 32:11 (1996), 1535–1540 | MR | Zbl
[10] G. A. Sviridyuk, A. A. Zamyshlyaeva, “The phase spaces of a class of linear higher-order Sobolev type equations”, Differ. Equ., 42:2 (2006), 269–278 | DOI | MR | Zbl
[11] N. A. Manakova, G. A. Sviridyuk, “Neklassicheskie uravneniya matematicheskoi fiziki. Fazovye prostranstva polulineinykh uravnenii sobolevskogo tipa”, Vestn. Yuzhno-Ur. un-ta. Ser. Matem. Mekh. Fiz., 8:3 (2016), 31–51 | DOI