Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JCEM_2017_4_2_a3, author = {P. O. Moskvicheva}, title = {A numerical experiment for the {Barenblatt} -- {Zheltov} -- {Kochina} equation in a bounded domain}, journal = {Journal of computational and engineering mathematics}, pages = {41--48}, publisher = {mathdoc}, volume = {4}, number = {2}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JCEM_2017_4_2_a3/} }
TY - JOUR AU - P. O. Moskvicheva TI - A numerical experiment for the Barenblatt -- Zheltov -- Kochina equation in a bounded domain JO - Journal of computational and engineering mathematics PY - 2017 SP - 41 EP - 48 VL - 4 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JCEM_2017_4_2_a3/ LA - en ID - JCEM_2017_4_2_a3 ER -
%0 Journal Article %A P. O. Moskvicheva %T A numerical experiment for the Barenblatt -- Zheltov -- Kochina equation in a bounded domain %J Journal of computational and engineering mathematics %D 2017 %P 41-48 %V 4 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/JCEM_2017_4_2_a3/ %G en %F JCEM_2017_4_2_a3
P. O. Moskvicheva. A numerical experiment for the Barenblatt -- Zheltov -- Kochina equation in a bounded domain. Journal of computational and engineering mathematics, Tome 4 (2017) no. 2, pp. 41-48. http://geodesic.mathdoc.fr/item/JCEM_2017_4_2_a3/
[1] G. I. Barenblatt, Yu. P. Zheltov, I. N. Kochina, “Basic Concepts in the Theory of Seepage of Homogeneous Fluids in Fissurized Rocks [Strata]”, Journal of Applied Mathematics and Mechanics, 24:5 (1960), 1286–1303 | DOI | Zbl
[2] M. Hallaire, “On a theory of moisture-transfer”, Inst. Rech. Agronom., 1964, no. 3, 60–72
[3] P. J. Chen, M. E. Gurtin, “On a theory of heat conduction involving two temperatures”, Z. Angew. Math. Phys., 19 (1968), 614–627 | DOI | Zbl
[4] A. V. Keller, Issledovanie ogranichennykh reshenii lineinykh uravnenii tipa Soboleva, diss. ...kand. fiz.-matem. nauk, Chelyabinsk, 1997, 115 pp.
[5] G. A. Sviridyuk, A. V. Keller, “Invariant spaces and dichotomies of solutions of a class of linear equations of the Sobolev type”, Russian Math. (Iz. VUZ), 41:5 (1997), 57–65 | MR | Zbl
[6] A. S. Shipilov, “Ob ustoichivosti reshenii uravnenii Barenblatta–Zheltova–Kochinoi na geometricheskom grafe”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 2008, no. 1, 106–110 | Zbl
[7] S. A. Zagrebina, P. O. Pivovarova, “Vtoroi metod lyapunova v normalizovannykh prostranstvakh”, Voronezhskaya zimnyaya matematicheskaya shkola S. G. Kreina – 2010, Materialy mezhdunarodnoi konferentsii, Voronezh, 2010, 50–60
[8] G. A. Sviridyuk, V. E. Fedorov, Linear Sobolev Type Equations and Degenerate Semigroups of Operators, v. 42, Inverse and Ill-Posed Problems Series, de Gruyer, 2012, 216+viii pp. | DOI | MR
[9] G. A. Sviridyuk, M. M. Yakupov, “The phase space of the initial-boundary value problem for the Oskolkov system”, Differ. Equ., 32:11 (1996), 1535–1540 | MR | Zbl
[10] G. A. Sviridyuk, A. A. Zamyshlyaeva, “The phase spaces of a class of linear higher-order Sobolev type equations”, Differ. Equ., 42:2 (2006), 269–278 | DOI | MR | Zbl
[11] N. A. Manakova, G. A. Sviridyuk, “Neklassicheskie uravneniya matematicheskoi fiziki. Fazovye prostranstva polulineinykh uravnenii sobolevskogo tipa”, Vestn. Yuzhno-Ur. un-ta. Ser. Matem. Mekh. Fiz., 8:3 (2016), 31–51 | DOI