A numerical experiment for the Barenblatt -- Zheltov -- Kochina equation in a bounded domain
Journal of computational and engineering mathematics, Tome 4 (2017) no. 2, pp. 41-48.

Voir la notice de l'article provenant de la source Math-Net.Ru

An investigation of the stability of Sobolev type equations undoubtedly is an actual problem, since these equations, with various conditions, model a multitude of processes. For example, the Barenblatt – Zheltov – Kochina model describes such processes as, for example, filtration and thermal conductivity. In this paper we consider the Cauchy – Dirichlet problem for equation in a bounded domain. We shall understand stability in the sense of Lyapunov A.M. The aim of this paper is to obtain conditions under which the stationary solution of our problem will be stable and asymptotically stable. The obtained conditions are formulated in the theorem. In addition, an algorithm of the computational experiment will be described to illustrate the instability in the case when the conditions of the theorem are not satisfied. We note that here we apply the method of the Lyapunov functional modified for the case of complete normed spaces. The computational experiment is based on the Galerkin method.
Keywords: Sobolev type equations, stability.
@article{JCEM_2017_4_2_a3,
     author = {P. O. Moskvicheva},
     title = {A numerical experiment for the {Barenblatt} -- {Zheltov} -- {Kochina} equation in a bounded domain},
     journal = {Journal of computational and engineering mathematics},
     pages = {41--48},
     publisher = {mathdoc},
     volume = {4},
     number = {2},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JCEM_2017_4_2_a3/}
}
TY  - JOUR
AU  - P. O. Moskvicheva
TI  - A numerical experiment for the Barenblatt -- Zheltov -- Kochina equation in a bounded domain
JO  - Journal of computational and engineering mathematics
PY  - 2017
SP  - 41
EP  - 48
VL  - 4
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCEM_2017_4_2_a3/
LA  - en
ID  - JCEM_2017_4_2_a3
ER  - 
%0 Journal Article
%A P. O. Moskvicheva
%T A numerical experiment for the Barenblatt -- Zheltov -- Kochina equation in a bounded domain
%J Journal of computational and engineering mathematics
%D 2017
%P 41-48
%V 4
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCEM_2017_4_2_a3/
%G en
%F JCEM_2017_4_2_a3
P. O. Moskvicheva. A numerical experiment for the Barenblatt -- Zheltov -- Kochina equation in a bounded domain. Journal of computational and engineering mathematics, Tome 4 (2017) no. 2, pp. 41-48. http://geodesic.mathdoc.fr/item/JCEM_2017_4_2_a3/

[1] G. I. Barenblatt, Yu. P. Zheltov, I. N. Kochina, “Basic Concepts in the Theory of Seepage of Homogeneous Fluids in Fissurized Rocks [Strata]”, Journal of Applied Mathematics and Mechanics, 24:5 (1960), 1286–1303 | DOI | Zbl

[2] M. Hallaire, “On a theory of moisture-transfer”, Inst. Rech. Agronom., 1964, no. 3, 60–72

[3] P. J. Chen, M. E. Gurtin, “On a theory of heat conduction involving two temperatures”, Z. Angew. Math. Phys., 19 (1968), 614–627 | DOI | Zbl

[4] A. V. Keller, Issledovanie ogranichennykh reshenii lineinykh uravnenii tipa Soboleva, diss. ...kand. fiz.-matem. nauk, Chelyabinsk, 1997, 115 pp.

[5] G. A. Sviridyuk, A. V. Keller, “Invariant spaces and dichotomies of solutions of a class of linear equations of the Sobolev type”, Russian Math. (Iz. VUZ), 41:5 (1997), 57–65 | MR | Zbl

[6] A. S. Shipilov, “Ob ustoichivosti reshenii uravnenii Barenblatta–Zheltova–Kochinoi na geometricheskom grafe”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 2008, no. 1, 106–110 | Zbl

[7] S. A. Zagrebina, P. O. Pivovarova, “Vtoroi metod lyapunova v normalizovannykh prostranstvakh”, Voronezhskaya zimnyaya matematicheskaya shkola S. G. Kreina – 2010, Materialy mezhdunarodnoi konferentsii, Voronezh, 2010, 50–60

[8] G. A. Sviridyuk, V. E. Fedorov, Linear Sobolev Type Equations and Degenerate Semigroups of Operators, v. 42, Inverse and Ill-Posed Problems Series, de Gruyer, 2012, 216+viii pp. | DOI | MR

[9] G. A. Sviridyuk, M. M. Yakupov, “The phase space of the initial-boundary value problem for the Oskolkov system”, Differ. Equ., 32:11 (1996), 1535–1540 | MR | Zbl

[10] G. A. Sviridyuk, A. A. Zamyshlyaeva, “The phase spaces of a class of linear higher-order Sobolev type equations”, Differ. Equ., 42:2 (2006), 269–278 | DOI | MR | Zbl

[11] N. A. Manakova, G. A. Sviridyuk, “Neklassicheskie uravneniya matematicheskoi fiziki. Fazovye prostranstva polulineinykh uravnenii sobolevskogo tipa”, Vestn. Yuzhno-Ur. un-ta. Ser. Matem. Mekh. Fiz., 8:3 (2016), 31–51 | DOI