Simplification of statistical description of quantum entanglement of multidimensional biometric data using symmetrization of paired correlation matrices
Journal of computational and engineering mathematics, Tome 4 (2017) no. 2, pp. 3-13.

Voir la notice de l'article provenant de la source Math-Net.Ru

The aim of the paper is to simplify the description of quantum entanglement of multidimensional biometric data and data of another nature. We use a correlation symmetrization procedure based on conservation of quantum superposition entropy codes, supported on the outputs of neural networks converter of biometric data. We give a nomogram of parameter connection having the same correlation with the output entropy for codes with the length 2, 4, 8,…, 256 bits and the formula to convert the coordinate system, simplifying connection of entropy and quantum entanglement value of multidimensional data. We claim that synthesis of correct analytical models having high dimensions connecting quantum entanglement and quantum superposition is possible only for symmetrical mathematical constructions. Obtaining asymmetrical correct data is possible only by processing real biometric images of another nature.
Keywords: quantum superposition, quantum entanglement, neural network converter of biometric code, symmetrization of multidimensional correlative matrix, entropy.
@article{JCEM_2017_4_2_a0,
     author = {A. I. Ivanov and A. V. Bezyayev and A. I. Gazin},
     title = {Simplification of statistical description of quantum entanglement of multidimensional biometric data using symmetrization of paired correlation matrices},
     journal = {Journal of computational and engineering mathematics},
     pages = {3--13},
     publisher = {mathdoc},
     volume = {4},
     number = {2},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JCEM_2017_4_2_a0/}
}
TY  - JOUR
AU  - A. I. Ivanov
AU  - A. V. Bezyayev
AU  - A. I. Gazin
TI  - Simplification of statistical description of quantum entanglement of multidimensional biometric data using symmetrization of paired correlation matrices
JO  - Journal of computational and engineering mathematics
PY  - 2017
SP  - 3
EP  - 13
VL  - 4
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCEM_2017_4_2_a0/
LA  - en
ID  - JCEM_2017_4_2_a0
ER  - 
%0 Journal Article
%A A. I. Ivanov
%A A. V. Bezyayev
%A A. I. Gazin
%T Simplification of statistical description of quantum entanglement of multidimensional biometric data using symmetrization of paired correlation matrices
%J Journal of computational and engineering mathematics
%D 2017
%P 3-13
%V 4
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCEM_2017_4_2_a0/
%G en
%F JCEM_2017_4_2_a0
A. I. Ivanov; A. V. Bezyayev; A. I. Gazin. Simplification of statistical description of quantum entanglement of multidimensional biometric data using symmetrization of paired correlation matrices. Journal of computational and engineering mathematics, Tome 4 (2017) no. 2, pp. 3-13. http://geodesic.mathdoc.fr/item/JCEM_2017_4_2_a0/

[1] Y. Dodis, L. Reyzin, A. Smith, “Fuzzy Extractors: How to Generate Strong Keys from Biometrics and Other Noisy Data”, Advances in Cryptology – EUROCRYPT 2004, Proc. Int. Conference on the Theory and Applications of Cryptographic Techniques (Interlaken, Switzerland, May 2–6), v. 3027, Lecture Notes in Computer Science, eds. C. Cachin, J. L. Camenisch, Springer-Verlag, Berlin, Heidelberg, 2004, 523–540 | DOI | MR | Zbl

[2] F. Monrose, M. Reiter, Q. Li, S. Wetzel, “Cryptographic key generation from voice”, Proc. IEEE Symp. on Security and Privacy, 2001, 202–213 | DOI

[3] J. Ramirez-Ruiz, C. Pfeiffer, J. Nolazco-Flores, “Cryptographic keys generation using FingerCodes”, Advances in Artificial Intelligence – IBERAMIA-SBIA 2006, Proc. 2nd Int. Joint Conference (Ribeirão Preto, Brazil, October 23–27), v. 4140, Lecture Notes in Computer Science, eds. J. S. Sichman, H. Coelho, S. O. Rezende, Springer-Verlag, Berlin, Heidelberg, 2006, 178–187 | DOI

[4] V. I. Volchikhin, A. I. Ivanov, I. G. Nazarov, V. A. Funtikov, Yu. K. Yazov, Neirosetevaya zaschita personalnykh biometricheskikh dannykh, Radiotekhnika, M., 2012

[5] B. S. Akhmetov, A. I. Ivanov, V. A. Funtikov, A. V. Bezyaev, E. A. Malygina, Tekhnologiya ispolzovaniya bolshikh neironnykh setei dlya preobrazovaniya nechetkikh biometricheskikh dannykh v kod klyucha dostupa, Izdatelstvo LEM, Almaty, 2014 http://portal.kazntu.kz/files/publicate/2015-10-18-11940_7.pdf

[6] Zaschita informatsii. Tekhnika zaschity informatsii. Avtomaticheskoe obuchenie neirosetevykh preobrazovatelei biometriya – kod dostupa, GOST R 52633.5-2011, 2011

[7] A. I. Ivanov, Mnogomernaya neirosetevaya obrabotka biometricheskikh dannykh s programmnym vosproizvedeniem effektov kvantovoi superpozitsii, Izdatelstvo PNIEI, Penza, 2016 http://pniei.pf/activity/science/BOOK16.pdf

[8] M. Nielsen, I. Chuang, Quantum Computation and Quantum Information, Cambridge University Press, 2000 http://www.michaelnielsen.org/qcqi/QINFO-book-nielsen-and-chuang-toc-and- chapter1-nov00-acro5.pdf | MR | Zbl

[9] A. I. Ivanov, Neirosetevye tekhnologii biometricheskoi autentifikatsii polzovatelei otkrytykh sistem, avtoreferat diss. ... dokt. tekhn. nauk, Penza, 2002, 34 pp.

[10] P. Eykhoff, System identification: parameter and state estimation, John Wiley and Sons Ltd., 1974 | MR

[11] A. I. Ivanov, “Two Methods of Hammersteine Orthogonal Model Identification with the Possibility of Convergence Defect Estimation”, Engineering Simulation, 16 (1999), 553–560

[12] A. I. Ivanov, “Simple Numerical Method of SeparableVolterra Kernels Symmetrization Defect Estimation”, Engineering Simulation, 16 (1999), 411–416

[13] A. I. Ivanov, “Sintez nelineinykh dinamicheskikh modelei Vinera – Gammershteina pereraspredeleniem pamyati mezhdu vkhodom i vykhodom”, Avtomat. i telemekh., 1997, no. 11, 21–32 | Zbl

[14] A. S. Shalygin, Yu. I. Palagin, Prikladnye metody statisticheskogo modelirovaniya, Mashinostroenie, L., 1986

[15] A. I. Ivanov, Biometricheskaya identifikatsiya lichnosti po dinamike podsoznatelnykh dvizhenii, Izd-vo PGU, Penza, 2000