Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JCEM_2017_4_1_a6, author = {E. V. Kirillov}, title = {The spectral identity for the operator with non-nuclear resolvent}, journal = {Journal of computational and engineering mathematics}, pages = {69--75}, publisher = {mathdoc}, volume = {4}, number = {1}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JCEM_2017_4_1_a6/} }
TY - JOUR AU - E. V. Kirillov TI - The spectral identity for the operator with non-nuclear resolvent JO - Journal of computational and engineering mathematics PY - 2017 SP - 69 EP - 75 VL - 4 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JCEM_2017_4_1_a6/ LA - en ID - JCEM_2017_4_1_a6 ER -
E. V. Kirillov. The spectral identity for the operator with non-nuclear resolvent. Journal of computational and engineering mathematics, Tome 4 (2017) no. 1, pp. 69-75. http://geodesic.mathdoc.fr/item/JCEM_2017_4_1_a6/
[1] V. A. Sadovnichii, V. V. Dubrovskii, “Ob odnoi abstraktnoi teoreme teorii vozmuschenii, o formulakh regulyarizovannykh sledov i o dzeta-funktsii operatorov”, Differents. uravneniya, 13:7 (1977), 1264–1271 | MR | Zbl
[2] G. A. Sviridyuk, V. E. Fedorov, Linear Sobolev Type Equations and Degenerate Semigroups of Operators, v. 42, Inverse and Ill-Posed Problems Series, de Gruyer, 2012, 216+viii pp. | DOI | MR
[3] G. A. Zakirova, E. V. Kirillov, “L-regularized Trace of One of the Perturbed Operator”, Bulletin of Odessa National University. Mathematics and Mechanics, 18:2 (18) (2013), 7–13
[4] G. A. Sviridyuk, N. A. Manakova, G. A. Zakirova, “The Asymptotics of Eigenvalues of a Differential Operator in the Stochastic Models with "White Noise" ”, Applied Mathematical Sciences, 8:173-176 (2014), 8747–8754 | DOI
[5] G. A. Sviridyuk, N. A. Manakova, “The Dynamical Models of Sobolev Type with Showalter–Sidorov Condition and Additive “Noise””, Vestnik YuUrGU. Ser. Mat. Model. Progr., 7:1 (2014), 90–103 | DOI | Zbl
[6] I. M. Gelfand, B. M. Levitan, “Ob odnom prostom tozhdestve dlya sobstvennykh znachenii differentsialnogo operatora vtorogo poryadka”, Doklady Akademii nauk SSSR, 88:4 (1953), 593–596 | Zbl
[7] V. A. Sadovnichii, S. V. Konyagin, V. E. Podolskii, “Regulyarizovannyi sled operatora s yadernoi rezolventoi, vozmuschennogo ogranichennym”, Doklady Akademii nauk, 373:1 (2000), 26–28 | MR
[8] V. A. Sadovnichii, V. E. Podolskii, “Traces of operators with relatively compact perturbations”, Sb. Math., 193:2 (2002), 279–302 | DOI | DOI | MR | Zbl
[9] G. A. Zakirova, A. I. Sedov, “An Inverse Spectral Problem for Laplace Operator and it's Approximate Solution”, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 2:27 (127) (2008), 19–27 | Zbl