Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JCEM_2017_4_1_a4, author = {I. S. Strepetova and L. M. Fatkullina and G. A. Zakirova}, title = {Spectral problems for one mathematical model of hydrodynamics}, journal = {Journal of computational and engineering mathematics}, pages = {48--56}, publisher = {mathdoc}, volume = {4}, number = {1}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JCEM_2017_4_1_a4/} }
TY - JOUR AU - I. S. Strepetova AU - L. M. Fatkullina AU - G. A. Zakirova TI - Spectral problems for one mathematical model of hydrodynamics JO - Journal of computational and engineering mathematics PY - 2017 SP - 48 EP - 56 VL - 4 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JCEM_2017_4_1_a4/ LA - en ID - JCEM_2017_4_1_a4 ER -
%0 Journal Article %A I. S. Strepetova %A L. M. Fatkullina %A G. A. Zakirova %T Spectral problems for one mathematical model of hydrodynamics %J Journal of computational and engineering mathematics %D 2017 %P 48-56 %V 4 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/JCEM_2017_4_1_a4/ %G en %F JCEM_2017_4_1_a4
I. S. Strepetova; L. M. Fatkullina; G. A. Zakirova. Spectral problems for one mathematical model of hydrodynamics. Journal of computational and engineering mathematics, Tome 4 (2017) no. 1, pp. 48-56. http://geodesic.mathdoc.fr/item/JCEM_2017_4_1_a4/
[1] O. A. Torshina, “Sobstvennye chisla vozmuschennogo operatora Laplasa – Bokhnera”, Nauka i sovremennost. Matematika, 2013, no. 26-2, 48–52
[2] T.-L. Dinu, “On a Nonlinear Eigenvalue Problem in Sobolev Spaces with Variable Exponent”, Siberian Electronic Mathematical Reports, 2 (2005), 208–217 | MR | Zbl
[3] N. J. Rose, On an Eigenvalue Problem Involving Legendre Functions } (accessed on 1 March 2017) {\tt http://www4.ncsu.edu/njrose/pdfFiles/Legendre.pdf
[4] X. Wang, T. A. Ameel, R. O. Warrington, “Evaluation of the Eigenvalues of the Graetz Problem in Slip-Flow”, Int. Comm. Heat Mass Transfer, 23:4 (1996), 563–574 | DOI
[5] M. Kac, Can One Hear the Shape of a Drum?, The American Mathematical Monthly, 3:4, part 2 (1966), 1–23 | DOI | MR
[6] E. S. Dzektser, “Obobschenie uravneniya dvizheniya gruntovykh vod so svobodnoi poverkhnostyu”, DAN SSSR, 202:5 (1972), 1031–1033 | Zbl
[7] A. A. Zamyshlyaeva, D. K. T. Al-Isavi, “Golomorfnye vyrozhdennye polugruppy operatorov i evolyutsionnye uravneniya sobolevskogo tipa v kvazisobolevykh prostranstvakh posledovatelnostei”, Vestn. Yuzhno-Ur. un-ta. Ser. Matem. Mekh. Fiz., 7:4 (2015), 27–36 | DOI | MR | Zbl
[8] M. A. Sagadeeva, A. D. Badoyan, “Optimal control of solutions to the multipoint initial-final problem for nonstationary relatively bounded equations of Sobolev type”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 7:3 (2014), 128–134
[9] A. A. Zamyshlyaeva, D. K. T. Al-Isawi, “On some properties of solutions to one class of evolution Sobolev type mathematical models in quasi-Sobolev spaces”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 8:4 (2015), 113–119
[10] G. A. Zakirova, E. V. Kirillov, “L-regularized Trace of One of the Perturbed Operator”, Bulletin of Odessa National University. Mathematics and Mechanics, 18:2 (18) (2013), 7–13
[11] G. A. Sviridyuk, V. E. Fedorov, Linear Sobolev Type Equations and Degenerate Semigroups of Operators, v. 42, Inverse and Ill-Posed Problems Series, de Gruyer, 2012, 216+viii pp. | DOI | MR
[12] S. G. Mikhlin, Variational Methods in Mathematical Physics, ed. Translated by T. Boddington, Pergamon Press, Oxford, 1964, xxxii + 584 pp. | DOI | MR | Zbl
[13] S. I. Kadchenko, G. A. Zakirova, “A numerical method for inverse spectral problems”, Vestnik YuUrGU. Ser. Mat. Model. Progr., 8:3 (2015), 116–126 | DOI | Zbl