Spectral problems for one mathematical model of hydrodynamics
Journal of computational and engineering mathematics, Tome 4 (2017) no. 1, pp. 48-56.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is devoted to the investigation of two spectral problems: the eigenvalue problem and the inverse spectral problem for one mathematical model of hydrodynamics, namely the mathematical model for the evolution of the free filtered-fluid surface. The Galerkin method is chosen as the main method for solving the eigenvalue problem. A theorem on the convergence of Galerkin's method applied to this problem was given. For the given spectral problem the algorithm was developed. A program that allows calculating the eigenvalues of the perturbed operator was produced in Maple. For the inverse spectral problem, the resolvent method was chosen as the main one. For this spectral problem, an algorithm is also developed. A program that allows one to approximately reconstruct the potential from the known spectrum of the perturbed operator was created in Maple. The theoretical results were illustrated by numerical experiments for a model problem. Numerous experiments carried out have shown a high computational efficiency of the developed algorithms.
Keywords: perturbed operator, discrete self-adjoint operator, eigenvalues of the inverse spectral problem, potential, Dzektser equation.
@article{JCEM_2017_4_1_a4,
     author = {I. S. Strepetova and L. M. Fatkullina and G. A. Zakirova},
     title = {Spectral problems for one mathematical model of hydrodynamics},
     journal = {Journal of computational and engineering mathematics},
     pages = {48--56},
     publisher = {mathdoc},
     volume = {4},
     number = {1},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JCEM_2017_4_1_a4/}
}
TY  - JOUR
AU  - I. S. Strepetova
AU  - L. M. Fatkullina
AU  - G. A. Zakirova
TI  - Spectral problems for one mathematical model of hydrodynamics
JO  - Journal of computational and engineering mathematics
PY  - 2017
SP  - 48
EP  - 56
VL  - 4
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCEM_2017_4_1_a4/
LA  - en
ID  - JCEM_2017_4_1_a4
ER  - 
%0 Journal Article
%A I. S. Strepetova
%A L. M. Fatkullina
%A G. A. Zakirova
%T Spectral problems for one mathematical model of hydrodynamics
%J Journal of computational and engineering mathematics
%D 2017
%P 48-56
%V 4
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCEM_2017_4_1_a4/
%G en
%F JCEM_2017_4_1_a4
I. S. Strepetova; L. M. Fatkullina; G. A. Zakirova. Spectral problems for one mathematical model of hydrodynamics. Journal of computational and engineering mathematics, Tome 4 (2017) no. 1, pp. 48-56. http://geodesic.mathdoc.fr/item/JCEM_2017_4_1_a4/

[1] O. A. Torshina, “Sobstvennye chisla vozmuschennogo operatora Laplasa – Bokhnera”, Nauka i sovremennost. Matematika, 2013, no. 26-2, 48–52

[2] T.-L. Dinu, “On a Nonlinear Eigenvalue Problem in Sobolev Spaces with Variable Exponent”, Siberian Electronic Mathematical Reports, 2 (2005), 208–217 | MR | Zbl

[3] N. J. Rose, On an Eigenvalue Problem Involving Legendre Functions } (accessed on 1 March 2017) {\tt http://www4.ncsu.edu/njrose/pdfFiles/Legendre.pdf

[4] X. Wang, T. A. Ameel, R. O. Warrington, “Evaluation of the Eigenvalues of the Graetz Problem in Slip-Flow”, Int. Comm. Heat Mass Transfer, 23:4 (1996), 563–574 | DOI

[5] M. Kac, Can One Hear the Shape of a Drum?, The American Mathematical Monthly, 3:4, part 2 (1966), 1–23 | DOI | MR

[6] E. S. Dzektser, “Obobschenie uravneniya dvizheniya gruntovykh vod so svobodnoi poverkhnostyu”, DAN SSSR, 202:5 (1972), 1031–1033 | Zbl

[7] A. A. Zamyshlyaeva, D. K. T. Al-Isavi, “Golomorfnye vyrozhdennye polugruppy operatorov i evolyutsionnye uravneniya sobolevskogo tipa v kvazisobolevykh prostranstvakh posledovatelnostei”, Vestn. Yuzhno-Ur. un-ta. Ser. Matem. Mekh. Fiz., 7:4 (2015), 27–36 | DOI | MR | Zbl

[8] M. A. Sagadeeva, A. D. Badoyan, “Optimal control of solutions to the multipoint initial-final problem for nonstationary relatively bounded equations of Sobolev type”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 7:3 (2014), 128–134

[9] A. A. Zamyshlyaeva, D. K. T. Al-Isawi, “On some properties of solutions to one class of evolution Sobolev type mathematical models in quasi-Sobolev spaces”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 8:4 (2015), 113–119

[10] G. A. Zakirova, E. V. Kirillov, “L-regularized Trace of One of the Perturbed Operator”, Bulletin of Odessa National University. Mathematics and Mechanics, 18:2 (18) (2013), 7–13

[11] G. A. Sviridyuk, V. E. Fedorov, Linear Sobolev Type Equations and Degenerate Semigroups of Operators, v. 42, Inverse and Ill-Posed Problems Series, de Gruyer, 2012, 216+viii pp. | DOI | MR

[12] S. G. Mikhlin, Variational Methods in Mathematical Physics, ed. Translated by T. Boddington, Pergamon Press, Oxford, 1964, xxxii + 584 pp. | DOI | MR | Zbl

[13] S. I. Kadchenko, G. A. Zakirova, “A numerical method for inverse spectral problems”, Vestnik YuUrGU. Ser. Mat. Model. Progr., 8:3 (2015), 116–126 | DOI | Zbl