Calculation of eigenvalues of discrete semibounded differential operators
Journal of computational and engineering mathematics, Tome 4 (2017) no. 1, pp. 38-47.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a problem of eigenvalues of an abstract discrete semibounded operator acting in a separable Hilbert space. The existence and uniqueness of the solution, as well as a convergence of the Galerkin method with reference to the problem, are proved. Simple formulas to calculate the eigenvalues are obtained. The formulas based on Galerkin method allow to calculate eigenvalues of discrete semibounded operators with high computational efficiency. In contrast to the classical methods, the formulas sharply reduce the number of calculations. Also, the formulas allow to find eigenvalues of the operator, regardless of whether the eigenvalues with smaller numbers are known or not. The formulas solve the problem on a calculation of all necessary spectrum points of the abstract discrete semibounded operators.
Keywords: eigenvalues, eigenfunctions, perturbation, discrete operator, Galerkin method, existence and uniqueness of the solution.
@article{JCEM_2017_4_1_a3,
     author = {S. I. Kadchenko and G. A. Zakirova},
     title = {Calculation of eigenvalues of discrete semibounded differential operators},
     journal = {Journal of computational and engineering mathematics},
     pages = {38--47},
     publisher = {mathdoc},
     volume = {4},
     number = {1},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JCEM_2017_4_1_a3/}
}
TY  - JOUR
AU  - S. I. Kadchenko
AU  - G. A. Zakirova
TI  - Calculation of eigenvalues of discrete semibounded differential operators
JO  - Journal of computational and engineering mathematics
PY  - 2017
SP  - 38
EP  - 47
VL  - 4
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCEM_2017_4_1_a3/
LA  - en
ID  - JCEM_2017_4_1_a3
ER  - 
%0 Journal Article
%A S. I. Kadchenko
%A G. A. Zakirova
%T Calculation of eigenvalues of discrete semibounded differential operators
%J Journal of computational and engineering mathematics
%D 2017
%P 38-47
%V 4
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCEM_2017_4_1_a3/
%G en
%F JCEM_2017_4_1_a3
S. I. Kadchenko; G. A. Zakirova. Calculation of eigenvalues of discrete semibounded differential operators. Journal of computational and engineering mathematics, Tome 4 (2017) no. 1, pp. 38-47. http://geodesic.mathdoc.fr/item/JCEM_2017_4_1_a3/

[1] V. A. Sadovnichii, V. E. Podolskii, “O vychislenii pervykh sobstvennykh znachenii operatora Shturma – Liuvillya”, Doklady Akademii nauk, 346:2 (1996), 162–164 | MR

[2] S. I. Kadchenko, I. I. Kinzina, “Computation of eigenvalues of perturbed discrete semibounded operators”, Comput. Math. Math. Phys., 46:7 (2006), 1200–1206 | DOI | MR

[3] S. I. Kadchenko, L. S. Ryazanova, “Chislennyi metod nakhozhdeniya sobstvennykh znachenii diskretnykh poluogranichennykh snizu operatorov”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 2011, no. 8, 46–51 | Zbl

[4] S. N. Kakushkin, S. I. Kadchenko, “The calculation of values of eigenfunctions of the perturbed self-adjoint operators by regularized traces method”, J. Comp. Eng. Math., 2:4 (2015), 48–60 | DOI | Zbl

[5] S. I. Kadchenko, L. S. Ryazanova, “Vychislenie sobstvennykh chisel spektralnoi zadachi Orra – Zommerfelda metodom regulyarizovannykh sledov”, Matematicheskoe i programmnoe obespechenie sistem v promyshlennoi i sotsialnoi sferakh, 2014, no. 2 (5), 3–18

[6] S. I. Kadchenko, L. S. Ryazanova, A. I. Kadchenko, “Vychislenie sobstvennykh znachenii spektralnoi zadachi Orra – Zommerfelda metodom regulyarizovannykh sledov”, Algoritmicheskii analiz neustoichivykh zadach, Tezisy dokladov Vserossiiskoi konferentsii s mezhdunarodnym uchastiem, posvyaschennoi pamyati V.K. Ivanova (Chelyabinsk, 10-14 noyabrya 2014), ed. A. V. Keller, Izd.tsentr YuUrGU, Chelyabinsk, 2014, 124–126

[7] V. A. Sadovnichii, V. V. Dubrovskii, S. I. Kadchenko, V. F. Kravchenko, “Vychislenie sobstvennykh chisel zadachi gidrodinamicheskoi teorii ustoichivosti techeniya vyazkoi zhidkosti mezhdu dvumya vraschayuschimisya tsilindrami pri nebolshikh chislakh Reinolsa”, Doklady Akademii nauk, 363:6 (1998), 748–750 | MR

[8] S. I. Kadchenko, G. A. Zakirova, “Computation of Eigenvalues of Discrete Lower Semibounded Operators”, Applied Mathematical Sciences, 10:7 (2016), 323–329 | DOI

[9] S. I. Kadchenko, G. A. Zakirova, “A numerical method for inverse spectral problems”, Vestnik YuUrGU. Ser. Mat. Model. Progr., 8:3 (2015), 116–126 | DOI | Zbl

[10] S. I. Kadchenko, I. I. Kinzina, “Linear Equations for Approximate Calculation of Eigenvalues of Perturbed Self-Adjoint Operators”, Electromagnetic Waves and Electronic Systems, 10:6 (2005), 4–12

[11] S. I. Kadchenko, S. N. Kakushkin, “The Numerical Methods of Eigenvalues and Eigenfunctions of Perturbed Self-Adjoin Operator Finding”, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 13:27 (286) (2012), 45–57 | Zbl

[12] S. I. Kadchenko, “Numerical Method for the Solution of Inverse Problems Generated by Perturbations of Self-Adjoint Operators by Method of Regularized Traces”, Vestnik of Samara State University, 2013, no. 6 (107), 23–30

[13] V. A. Sadovnichii, Teoriya operatorov, Vysshaya shkola, Moskva, 1999 | MR

[14] S. G. Mikhlin, Variational Methods in Mathematical Physics, ed. Translated by T. Boddington, Pergamon Press, Oxford, 1964, xxxii + 584 pp. | DOI | MR | Zbl

[15] N. I. Polskii, “Nekotorye obobscheniya metoda B. G. Galerkina”, Doklady Akademii nauk SSSR, 46:1 (1952), 469–472 | MR

[16] N. I. Polskii, “O skhodimosti nekotorykh priblizhennykh metodov analiza”, Ukr. mat. zhurnal, 7:1 (1955), 56–70 | MR

[17] N. I. Polskii, “Ob odnoi obschei skheme primeneniya priblizhennykh metodov”, Doklady Akademii nauk SSSR, 111:6 (1956), 1181–1183 | MR