Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JCEM_2017_4_1_a2, author = {F. L. Hasan}, title = {The bounded solutions on a semiaxis for the linearized {Hoff} equation in {quasi-Sobolev} spaces}, journal = {Journal of computational and engineering mathematics}, pages = {27--37}, publisher = {mathdoc}, volume = {4}, number = {1}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JCEM_2017_4_1_a2/} }
TY - JOUR AU - F. L. Hasan TI - The bounded solutions on a semiaxis for the linearized Hoff equation in quasi-Sobolev spaces JO - Journal of computational and engineering mathematics PY - 2017 SP - 27 EP - 37 VL - 4 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JCEM_2017_4_1_a2/ LA - en ID - JCEM_2017_4_1_a2 ER -
%0 Journal Article %A F. L. Hasan %T The bounded solutions on a semiaxis for the linearized Hoff equation in quasi-Sobolev spaces %J Journal of computational and engineering mathematics %D 2017 %P 27-37 %V 4 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/JCEM_2017_4_1_a2/ %G en %F JCEM_2017_4_1_a2
F. L. Hasan. The bounded solutions on a semiaxis for the linearized Hoff equation in quasi-Sobolev spaces. Journal of computational and engineering mathematics, Tome 4 (2017) no. 1, pp. 27-37. http://geodesic.mathdoc.fr/item/JCEM_2017_4_1_a2/
[1] D. K. Al-Delfi, “Kvazisobolevy prostranstva $l_p^m$”, Vestn. Yuzhno-Ur. un-ta. Ser. Matem. Mekh. Fiz., 5:1 (2013), 107–109 | Zbl
[2] N. A. Hoff, “Greep buckling”, Journal of the Aeronautical Sciences, 7:1 (1965), 1–20
[3] G. A. Sviridyuk, S. A. Zagrebina, “Neklassicheskie modeli matematicheskoi fiziki”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 2012, no. 14, 7–18 | Zbl
[4] G. A. Sviridyuk, N. A. Manakova, “Dinamicheskie modeli sobolevskogo tipa s usloviem Shouoltera–Sidorova i additivnymi «shumami»”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 7:1 (2014), 90–103 | DOI | Zbl
[5] F. L. Hasan, “Solvability of initial problems for one class of dynamical equations in quasi-Sobolev spaces”, J. Comp. Eng. Math., 2:3 (2015), 34–42 | DOI | Zbl
[6] G. A. Sviridyuk, V. E. Fedorov, Linear Sobolev Type Equations and Degenerate Semigroups of Operators, v. 42, Inverse and Ill-Posed Problems Series, de Gruyer, 2012, 216+viii pp. | DOI | MR
[7] A. V. Keller, Dzh. K. Al-Delfi, “Golomorfnye vyrozhdennye gruppy operatorov v kvazibanakhovykh prostranstvakh”, Vestn. Yuzhno-Ur. un-ta. Ser. Matem. Mekh. Fiz., 7:1 (2015), 20–27 | Zbl
[8] A. V. Keller, A. A. Zamyshlyaeva, M. A. Sagadeeva, “On integration in quasi-Banach spaces of sequences”, J. Comp. Eng. Math., 2:1 (2015), 52–56 | DOI | Zbl
[9] F. L. Khasan, “Otnositelno spektralnaya teorema v kvazibanakhovykh prostranstvakh”, Voronezhskaya zimnyaya matematicheskaya shkola S. G. Kreina – 2014 (Voronezh, 2014), Materialy mezhdunarodnoi konferentsii, Izdat.-poligraf. tsentr “Nauchnaya kniga”, Voronezh, 2014, 393–396
[10] M. A. Sagadeeva, A. S. Rashid, “Existence of solutions in quasi-Banach spaces for evolutionary Sobolev type equations in relatively radial case”, J. Comp. Eng. Math., 2:2 (2015), 71–81 | DOI | Zbl
[11] M. A. Sagadeeva, F. L. Khasan, “Suschestvovanie invariantnykh podprostranstv i eksponentsialnykh dikhotomii reshenii dinamicheskikh uravnenii sobolevskogo tipa v kvazibanakhovykh prostranstvakh”, Vestn. Yuzhno-Ur. un-ta. Ser. Matem. Mekh. Fiz., 7:4 (2015), 46–53 | DOI | Zbl
[12] S. Zagrebina, M. Sagadeeva, “The Generalized Splitting Theorem for Linear Sobolev type Equations in Relatively Radial Case”, IIGU Ser. Matematika, 7 (2014), 19–33 | Zbl
[13] G. A. Sviridyuk, M. M. Yakupov, “The phase space of the initial-boundary value problem for the Oskolkov system”, Differ. Equ., 32:11 (1996), 1535–1540 | MR | MR | Zbl
[14] A. V. Keller, Issledovanie ogranichennykh reshenii lineinykh uravnenii tipa Soboleva, diss. ...kand. fiz.-matem. nauk, Chelyabinsk, 1997, 115 pp.