The bounded solutions on a semiaxis for the linearized Hoff equation in quasi-Sobolev spaces
Journal of computational and engineering mathematics, Tome 4 (2017) no. 1, pp. 27-37.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we investigate the properties of the linearized Hoff equation in quasi-Sobolev spaces. Hoff equation, specified on the interval, describes the buckling of the H-beam. Due to the fact that for certain values of the parameters in the equation may be missing the derivative with respect to time, this equation refers in a frame of class of nonclassical equations of mathematical physics. The article by relatively spectral theorem describes the morphology of the phase space and the existence of invariant spaces of solutions. Using these results, we prove the existence of bounded on the semiaxis solutions for homogeneous evolution equations of Sobolev type in quasi-Sobolev spaces. Apart of the introduction and bibliography the article contains three parts. The first one shows the results on the solvability of the investigated class of equations. The second part shows the existence of bounded on the semiaxis solutions for the homogeneous equations of the research class. Finally, the third part presents the results of the existence of solutions bounded on the semiaxis for analog linearized Hoff equation in quasi-Sobolev spaces.
Keywords: Sobolev type equations, phase space, invariant subspaces of solutions, group of solving operators.
@article{JCEM_2017_4_1_a2,
     author = {F. L. Hasan},
     title = {The bounded solutions on a semiaxis for the linearized {Hoff} equation in {quasi-Sobolev} spaces},
     journal = {Journal of computational and engineering mathematics},
     pages = {27--37},
     publisher = {mathdoc},
     volume = {4},
     number = {1},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JCEM_2017_4_1_a2/}
}
TY  - JOUR
AU  - F. L. Hasan
TI  - The bounded solutions on a semiaxis for the linearized Hoff equation in quasi-Sobolev spaces
JO  - Journal of computational and engineering mathematics
PY  - 2017
SP  - 27
EP  - 37
VL  - 4
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCEM_2017_4_1_a2/
LA  - en
ID  - JCEM_2017_4_1_a2
ER  - 
%0 Journal Article
%A F. L. Hasan
%T The bounded solutions on a semiaxis for the linearized Hoff equation in quasi-Sobolev spaces
%J Journal of computational and engineering mathematics
%D 2017
%P 27-37
%V 4
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCEM_2017_4_1_a2/
%G en
%F JCEM_2017_4_1_a2
F. L. Hasan. The bounded solutions on a semiaxis for the linearized Hoff equation in quasi-Sobolev spaces. Journal of computational and engineering mathematics, Tome 4 (2017) no. 1, pp. 27-37. http://geodesic.mathdoc.fr/item/JCEM_2017_4_1_a2/

[1] D. K. Al-Delfi, “Kvazisobolevy prostranstva $l_p^m$”, Vestn. Yuzhno-Ur. un-ta. Ser. Matem. Mekh. Fiz., 5:1 (2013), 107–109 | Zbl

[2] N. A. Hoff, “Greep buckling”, Journal of the Aeronautical Sciences, 7:1 (1965), 1–20

[3] G. A. Sviridyuk, S. A. Zagrebina, “Neklassicheskie modeli matematicheskoi fiziki”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 2012, no. 14, 7–18 | Zbl

[4] G. A. Sviridyuk, N. A. Manakova, “Dinamicheskie modeli sobolevskogo tipa s usloviem Shouoltera–Sidorova i additivnymi «shumami»”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 7:1 (2014), 90–103 | DOI | Zbl

[5] F. L. Hasan, “Solvability of initial problems for one class of dynamical equations in quasi-Sobolev spaces”, J. Comp. Eng. Math., 2:3 (2015), 34–42 | DOI | Zbl

[6] G. A. Sviridyuk, V. E. Fedorov, Linear Sobolev Type Equations and Degenerate Semigroups of Operators, v. 42, Inverse and Ill-Posed Problems Series, de Gruyer, 2012, 216+viii pp. | DOI | MR

[7] A. V. Keller, Dzh. K. Al-Delfi, “Golomorfnye vyrozhdennye gruppy operatorov v kvazibanakhovykh prostranstvakh”, Vestn. Yuzhno-Ur. un-ta. Ser. Matem. Mekh. Fiz., 7:1 (2015), 20–27 | Zbl

[8] A. V. Keller, A. A. Zamyshlyaeva, M. A. Sagadeeva, “On integration in quasi-Banach spaces of sequences”, J. Comp. Eng. Math., 2:1 (2015), 52–56 | DOI | Zbl

[9] F. L. Khasan, “Otnositelno spektralnaya teorema v kvazibanakhovykh prostranstvakh”, Voronezhskaya zimnyaya matematicheskaya shkola S. G. Kreina – 2014 (Voronezh, 2014), Materialy mezhdunarodnoi konferentsii, Izdat.-poligraf. tsentr “Nauchnaya kniga”, Voronezh, 2014, 393–396

[10] M. A. Sagadeeva, A. S. Rashid, “Existence of solutions in quasi-Banach spaces for evolutionary Sobolev type equations in relatively radial case”, J. Comp. Eng. Math., 2:2 (2015), 71–81 | DOI | Zbl

[11] M. A. Sagadeeva, F. L. Khasan, “Suschestvovanie invariantnykh podprostranstv i eksponentsialnykh dikhotomii reshenii dinamicheskikh uravnenii sobolevskogo tipa v kvazibanakhovykh prostranstvakh”, Vestn. Yuzhno-Ur. un-ta. Ser. Matem. Mekh. Fiz., 7:4 (2015), 46–53 | DOI | Zbl

[12] S. Zagrebina, M. Sagadeeva, “The Generalized Splitting Theorem for Linear Sobolev type Equations in Relatively Radial Case”, IIGU Ser. Matematika, 7 (2014), 19–33 | Zbl

[13] G. A. Sviridyuk, M. M. Yakupov, “The phase space of the initial-boundary value problem for the Oskolkov system”, Differ. Equ., 32:11 (1996), 1535–1540 | MR | MR | Zbl

[14] A. V. Keller, Issledovanie ogranichennykh reshenii lineinykh uravnenii tipa Soboleva, diss. ...kand. fiz.-matem. nauk, Chelyabinsk, 1997, 115 pp.