On modified method of multistep coordinate descent for optimal control problem for semilinear Sobolev-type model
Journal of computational and engineering mathematics, Tome 3 (2016) no. 4, pp. 59-72.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper describes a numerical method for solving the optimal control problem for a semilinear model of Sobolev-type. The method is based on both the modified projection Galerkin method and the method of multistep coordinate descent with memory. New numerical methods for solving nonlinear optimal control problems are need, because there exists a large number of applications and it is difficult to find their analytical solutions. We consider mathematical model of regulating potential distribution of speed of the filtered liquid free surface motion. In order to numerically investigate the mathematical model, we use the sufficient conditions for the existence of an optimal control by solutions of Showalter–Sidorov problem for semilinear Sobolev type equation with $s$-monotone and $p$-coercive operator. We present the results of computational experiment that demonstrate the work of the proposed numerical method.
Keywords: semilinear Sobolev-type equation, optimal control problem, numerical solution, Galerkin method, method of multistep coordinate descent.
@article{JCEM_2016_3_4_a4,
     author = {N. A. Manakova},
     title = {On modified method of multistep coordinate descent for optimal control problem for semilinear {Sobolev-type} model},
     journal = {Journal of computational and engineering mathematics},
     pages = {59--72},
     publisher = {mathdoc},
     volume = {3},
     number = {4},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JCEM_2016_3_4_a4/}
}
TY  - JOUR
AU  - N. A. Manakova
TI  - On modified method of multistep coordinate descent for optimal control problem for semilinear Sobolev-type model
JO  - Journal of computational and engineering mathematics
PY  - 2016
SP  - 59
EP  - 72
VL  - 3
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCEM_2016_3_4_a4/
LA  - en
ID  - JCEM_2016_3_4_a4
ER  - 
%0 Journal Article
%A N. A. Manakova
%T On modified method of multistep coordinate descent for optimal control problem for semilinear Sobolev-type model
%J Journal of computational and engineering mathematics
%D 2016
%P 59-72
%V 3
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCEM_2016_3_4_a4/
%G en
%F JCEM_2016_3_4_a4
N. A. Manakova. On modified method of multistep coordinate descent for optimal control problem for semilinear Sobolev-type model. Journal of computational and engineering mathematics, Tome 3 (2016) no. 4, pp. 59-72. http://geodesic.mathdoc.fr/item/JCEM_2016_3_4_a4/

[1] R. E. Showalter, “The Sobolev Equation. I; II”, Applicable Analysis, 5:1; 2 (1975), 15–22; 88–89 | MR | Zbl

[2] G. A. Sviridyuk, “Zadacha Koshi dlya lineinogo operatornogo uravneniya tipa Soboleva s nepolozhitelnym operatorom pri proizvodnoi”, Differents. uravneniya, 23:10 (1987), 1823–1826 | MR | Zbl

[3] A. P. Oskolkov, “Nonlocal problems for some class nonlinear operator equations arising in the theory Sobolev type equations”, J. Soviet Math., 64:1 (1993), 724–736 | DOI | MR | Zbl

[4] G. A. Sviridyuk, V. E. Fedorov, Linear Sobolev Type Equations and Degenerate Semigroups of Operators, VSP, Utrecht–Boston, 2003, viii+216 pp. | MR | Zbl

[5] A. B. Al’shin, M. O. Korpusov, A. G. Sveshnikov, Blow-up in Nonlinear Sobolev Type Equations, De Gruyter Series in Nonlinear Analysis and Applications, 15, de Gruyter, Berlin, 2011, xii+648 pp. | MR | Zbl

[6] A. A. Zamyshlyaeva, “Matematicheskie modeli sobolevskogo tipa vysokogo poryadka”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 7:2 (2014), 5–28 | DOI | Zbl

[7] S. A. Zagrebina, “A multipoint initial-final value problem for a linear model of plane-parallel thermal convection in viscoelastic incompressible fluid”, Vestnik YuUrGU. Ser. Mat. Model. Progr., 7:3 (2014), 5–22 | DOI | Zbl

[8] A. V. Keller, S. A. Zagrebina, “Nekotorye obobscheniya zadachi Shouoltera–Sidorova dlya modelei sobolevskogo tipa”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 8:2 (2015), 5–23 | DOI | Zbl

[9] M. A. Sagadeeva, F. L. Khasan, “Ogranichennye resheniya modeli Barenblatta–Zheltova–Kochinoi v kvazisobolevykh prostranstvakh”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 8:4 (2015), 138–144 | DOI | Zbl

[10] G. A. Sviridyuk, A. A. Efremov, “Optimal control of Sobolev-type linear equations with relatively $p$-spectorial operators”, Differ. Equ., 31:11 (1995), 1882–1890 | MR | MR | Zbl

[11] G. A. Sviridyuk, N. A. Manakova, “The phase space of the Cauchy–Dirichlet problem for the Oskolkov equation of nonlinear filtration”, Russian Math. (Iz. VUZ), 47:9 (2003), 33–38 | MR | Zbl

[12] A. A. Zamyshlyaeva, O. N. Tsyplenkova, “Optimal Control of Solutions of the Showalter - Sidorov - Dirichlet Problem for the Boussinesq – Löve Equation”, Differential Equations, 49:11 (2013), 1356–1365 | DOI | MR | Zbl

[13] E. A. Bogatyreva, “Zadacha startovogo upravleniya i finalnogo nablyudeniya dlya odnogo kvazilineinogo uravneniya sobolevskogo tipa”, Vestn. Yuzhno-Ur. un-ta. Ser. Matem. Mekh. Fiz., 7:4 (2015), 5–10 | DOI | Zbl

[14] N. A. Manakova, O. V. Gavrilova, “Optimalnoe upravlenie dlya odnoi matematicheskoi modeli rasprostraneniya nervnogo impulsa”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 8:4 (2015), 120–126 | DOI | Zbl

[15] A. L. Shestakov, G. A. Sviridyuk, “Optimal measurement of dynamically distorted signals”, Vestnik YuUrGU. Ser. Mat. Model. Progr., 2011, no. 8, 70–75 | Zbl

[16] A. V. Keller, M. A. Sagadeeva, “Zadacha optimalnogo izmereniya dlya modeli izmeritelnogo ustroistva s determinirovannym multiplikativnym vozdeistviem i inertsionnostyu”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 7:1 (2014), 134–138 | DOI | Zbl

[17] G. A. Sviridyuk, S. A. Zagrebina, “Zadacha Shouoltera–Sidorova kak fenomen uravnenii sobolevskogo tipa”, Izv. Irkutskogo gos. un-ta. Ser. Matematika, 3:1 (2010), 104–125 | Zbl

[18] N. A. Manakova, G. A. Sviridyuk, “Neklassicheskie uravneniya matematicheskoi fiziki. Fazovye prostranstva polulineinykh uravnenii sobolevskogo tipa”, Vestn. Yuzhno-Ur. un-ta. Ser. Matem. Mekh. Fiz., 8:3 (2016), 31–51 | DOI

[19] J.-L. Lions, Contrôle optimal de systémes gouvernés par des équations aux dérivées partielles, Dunod, Paris, 1968, 426 pp. | MR | MR

[20] G. A. Sviridyuk, T. G. Sukachëva, “Galerkin approximations of singular nonlinear equations of Sobolev type”, Soviet Math. (Iz. VUZ), 33:10 (1989), 56–59 | MR | Zbl | Zbl

[21] E. A. Bogatyreva, N. A. Manakova, “Numerical simulation of the process of nonequilibrium counterflow capillary imbibition”, Comput. Math. Math. Phys., 56:1 (2016), 132–139 | DOI | DOI | MR | Zbl

[22] A. A. Zamyshlyaeva, A. S. Muravyev, “Computational experiment for one mathematical model of ion-acoustic waves”, Vestnik YuUrGU. Ser. Mat. Model. Progr., 8:2 (2015), 127–132 | DOI | Zbl

[23] A. V. Keller, E. I. Nazarova, “Zadacha optimalnogo izmereniya: chislennoe reshenie, algoritm programmy”, Izv. Irkutskogo gos. un-ta. Ser. Matematika, 4:3 (2011), 74–82 | Zbl

[24] A. V. Keller, M. A. Sagadeeva, “Chislennoe reshenie zadach optimalnogo i zhestkogo upravleniya dlya odnoi nestatsionarnoi sistemy leontevskogo tipa”, Nauchnye vedomosti Belgorodskogo gosudarstvennogo universiteta. Seriya: Matematika. Fizika, 32:19 (2013), 57–66

[25] N. A. Manakova, “Algorithm for numerical method of solution of the optimal control problem for semilinear Sobolev type models on basis of decomposition method”, J. Comp. Eng. Math., 2:3 (2015), 43–59 | DOI

[26] N. A. Manakova, “Zadacha optimalnogo upravleniya dlya obobschennogo filtratsionnogo uravneniya Bussineska”, Vestnik MaGU. Matematika, 2005, no. 8, 113–122

[27] E. S. Dzektser, “Obobschennye uravneniya dvizheniya gruntovykh vod so svobodnoi poverkhnostyu”, DAN SSSR, 202:5 (1972), 1031–1033 | Zbl