Method and algorithms for cascade classification of sulfur print images of billet transverse templates
Journal of computational and engineering mathematics, Tome 3 (2016) no. 4, pp. 11-40.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper presents studies of sulfur print images of continuous cast billet transverse templates. The authors determined a problem of low reliability of information about the quality of billets. When assessing an image visually, such assessment is subjective with a human factor to a large extent. The authors developed a control point layout chart to collect graphical information in the course of casting billets. It is proposed to introduce three classes of images broken up by a template brightness/foreground ratio. Regarding an increased complexity of algorithms, the authors proposed the cascade classification of images. The technique includes assessment of images by shape-generating parameters of a histogram, by a distance to reference normed histograms, and by applying fuzzy logic methods. Experimental performance of the cascade technique showed that a simplified technique by assessing shape-generating parameters had expressly identified $22\%$ of all images, by assessing a distance to reference normed histograms – $70\%$ of the rest, and only by applying fuzzy logic methods all the rest images had been unambiguously identified. A $100\%$ success of the classification is achieved only when applying all cascades of the developed technique.
Keywords: sulfur print images, image histogram, shape-generating parameters, distance between objects, object identification rules, cascade classification.
@article{JCEM_2016_3_4_a1,
     author = {I. A. Posokhov and O. S. Logunova and A. Yu. Mikov},
     title = {Method and algorithms for cascade classification of sulfur print images of billet transverse templates},
     journal = {Journal of computational and engineering mathematics},
     pages = {11--40},
     publisher = {mathdoc},
     volume = {3},
     number = {4},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JCEM_2016_3_4_a1/}
}
TY  - JOUR
AU  - I. A. Posokhov
AU  - O. S. Logunova
AU  - A. Yu. Mikov
TI  - Method and algorithms for cascade classification of sulfur print images of billet transverse templates
JO  - Journal of computational and engineering mathematics
PY  - 2016
SP  - 11
EP  - 40
VL  - 3
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCEM_2016_3_4_a1/
LA  - en
ID  - JCEM_2016_3_4_a1
ER  - 
%0 Journal Article
%A I. A. Posokhov
%A O. S. Logunova
%A A. Yu. Mikov
%T Method and algorithms for cascade classification of sulfur print images of billet transverse templates
%J Journal of computational and engineering mathematics
%D 2016
%P 11-40
%V 3
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCEM_2016_3_4_a1/
%G en
%F JCEM_2016_3_4_a1
I. A. Posokhov; O. S. Logunova; A. Yu. Mikov. Method and algorithms for cascade classification of sulfur print images of billet transverse templates. Journal of computational and engineering mathematics, Tome 3 (2016) no. 4, pp. 11-40. http://geodesic.mathdoc.fr/item/JCEM_2016_3_4_a1/

[1] O. S. Logunova, I. I. Matsko, I. A. Posohov, S. I. Luk'ynov, “Automatic System for Intelligent Support of Continuous Cast Billet Production Control Processes”, The International Journal of Advanced Manufacturing Technology, 74:9 (2014), 1407–1418 | DOI

[2] I. I. Matsko, Y. V. Snegirev, O. S. Logunova, “Data Acquisition and Preparation Methods for Continuously Cast Billets Quality Analysis Software”, Applied Mechanics and Materials, 110-116 (2012), 3557–3562 | DOI

[3] O. S. Logunova, “Internal-Defect Formation and the Thermal State of Continuous-Cast Billet”, Steel in Translation, 38:10 (2008), 849–852 | DOI

[4] O. Chapelle, P. Haffner, V. N. Vapnik, “Support Vector Machines for Histogram-Based Image Classification”, IEEE Transactions on Neural Networks, 10:5 (1999), 1055–1064 | DOI

[5] G. M. Foody, A. Mathur, “A Relative Evaluation of Multiclass Image Classificafion by Support Vector Machines”, IEEE Transactions on Geoscience and Remote Sensing, 42:6 (2004), 1335–1343 | DOI

[6] M. Lyons, J. Budynek, S. Akamatsu, “A Relative Evaluation of Multiclass Image Classificafion by Support Vector Machines”, Automatic Classification of Single Facial Images, 21:12 (1999), 1357–1362 | DOI

[7] K. V. Leemput, F. Maes, D. Vandermeulen, P. Suetens, “Automated Model-Based Tissue Classification of MR Images of the Brain”, IEEE Transactions on Medical Imaging, 18:10 (1999), 897–908 | DOI

[8] M. Varma, A. Zisserman, “A Statistical Approach to Texture Classification from Single Images”, International Journal of Computer Vision, 62:1-2 (2005), 61–81

[9] F. Wang, “Fuzzy Supervised Classification of Remote Sensing Images”, IEEE Transactions on Geoscience and Remote Sensing, 28:2 (1990), 194–201

[10] F. Wang, R. Newkirk, “Design and Implementation of Knowledge-Base System for Remotely Sensed Change Detection”, Journal of Imaging Techn., 13 (1987), 116–122

[11] R. L. Cannon, J. V. Dave, J. C. Bezdek, H. G. Kolsky, “Segmentation of a Thematic Mapper Image Using the Fuzzy C-Means Clustering Algorithm”, IEEE Transactions on Geoscience and Remote Sensing, GE-24:3 (1986), 400–408

[12] I. Morlini, S. Zani, “A New Class of Weighted Similarity Indices Using Polytomous Variables”, Journal of Classification, 29:2 (2012), 199–226 | DOI | MR | Zbl

[13] P. Giordani, H. Kiers, “FINDCLUS: Fuzzy INdividual Differences CLUStering”, Journal of Classification, 29:2 (2012), 170–198 | DOI | MR | Zbl

[14] P. Contreras, F. Murtagh, “Linear Time Hierarchical Clustering Using the Baire Metric”, Journal of Classification, 29:2 (2012), 118–143 | DOI | MR | Zbl

[15] A. Bar-Hen, S. Gey, J. M. Poggi, “Influence Measures for CART Classification Trees”, Journal of Classification, 32:1 (2015), 21–45 | DOI | MR | Zbl

[16] A. L. Shestakov, G. A. Sviridyuk, “On a New Conception of White Noise”, Obozrenie Prikladnoy i Promyshlennoy Matematiki, 19:2 (2012), 287–288

[17] A. L. Shestakov, G. A. Sviridyuk, Yu. V. Khudyakov, “Dynamic Measurement in Spaces of «Noise»”, Bulletin of the South Ural State University. Series «Computer Technologies, Automatic Control Radioelectronics», 13:2 (2013), 4–11

[18] C. Poynton, “Rehabilitation of Gamma”, Proc. SPIE, 1998 (1998), 232–242

[19] M. Stokes, M. Anderson, S. Chandrasekar, R. Motta, A Standard Default Color Space for the Internet } (accessed on 6 December 2016) {\tt http://www.w3.org/Graphics/Color/sRGB.html

[20] R. Gonsales, R. Vuds, Tsifrovaya obrabotka izobrazhenii, Tekhnosfera, M., 2005

[21] L. Shapiro, Dzh. Stokman, Kompyuternoe zrenie, BINOM. Laboratoriya znanii, M., 2006

[22] U. Prett, Tsifrovaya obrabotka izobrazhenii, Mir, M., 1982

[23] N. A. Otsu, “Threshold Selection Method from Gray-Level Histograms”, IEEE Trans-Actions on Systems, Man and Cybernetics, 9:1 (1979), 62–66 | MR

[24] T. W. Ridler, S. Calvard, “Picture Thresholding Using an Iterative Selection Method”, IEEE Trans. System, Man and Cybernetics, 8:8 (1978), 630–632