Application of neural cryptography in solving problems of information security
Journal of computational and engineering mathematics, Tome 3 (2016) no. 3, pp. 33-39.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to consideration of the actual problems connected with cryptographic methods of data protection, based on the use of mechanisms of artificial neural networks. Characteristics, as well as various approaches in implementation of cryptographic problems with use of artificial neural networks, are researched. The detailed overview of the artificial neural networks applied as data protection methods is carried out.
Keywords: cryptography, neurocryptography, artificial neural network.
@article{JCEM_2016_3_3_a3,
     author = {T. S. Ambrosova and N. D. Zylyarkina},
     title = {Application of neural cryptography in solving problems of information security},
     journal = {Journal of computational and engineering mathematics},
     pages = {33--39},
     publisher = {mathdoc},
     volume = {3},
     number = {3},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JCEM_2016_3_3_a3/}
}
TY  - JOUR
AU  - T. S. Ambrosova
AU  - N. D. Zylyarkina
TI  - Application of neural cryptography in solving problems of information security
JO  - Journal of computational and engineering mathematics
PY  - 2016
SP  - 33
EP  - 39
VL  - 3
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCEM_2016_3_3_a3/
LA  - en
ID  - JCEM_2016_3_3_a3
ER  - 
%0 Journal Article
%A T. S. Ambrosova
%A N. D. Zylyarkina
%T Application of neural cryptography in solving problems of information security
%J Journal of computational and engineering mathematics
%D 2016
%P 33-39
%V 3
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCEM_2016_3_3_a3/
%G en
%F JCEM_2016_3_3_a3
T. S. Ambrosova; N. D. Zylyarkina. Application of neural cryptography in solving problems of information security. Journal of computational and engineering mathematics, Tome 3 (2016) no. 3, pp. 33-39. http://geodesic.mathdoc.fr/item/JCEM_2016_3_3_a3/

[1] A. A. Ezhov, S. A. Shumskii, Neirokompyuting i ego primenenie v ekonomike i biznese, MIFI, M., 1998, 222 pp.

[2] I. V. Zaentsev, Neironnye seti: osnovnye modeli, VGU, Voronezh, 1999, 76 pp.

[3] M. V. Burakov, Neironnye seti i neirokontrollery, Izd-vo GUAP, SPb., 2013, 283 pp.

[4] D. F. Specht, “The General Regression Neural Network – Rediscovered”, Neural Networks, 6:7 (1993), 1033–1034 | DOI

[5] E. M. Grubnik, V. M. Lavrushin, A. A. Uskov, “Modelirovanie sotsialno-ekonomicheskikh sistem i protsessov na osnove apparata obobschenno-regressionnykh neironnykh setei”, Fundamentalnye i prikladnye issledovaniya kooperativnogo sektora ekonomiki, 2011, no. 1, 58–63

[6] O. P. Soldatova, V. V. Semenov, “Primenenie neironnykh setei dlya resheniya zadach prognozirovaniya”, Elektronnyi nauchnyi zhurnal «ISSLEDOVANO V ROSSII», 9 (2006), 1270–1276 (zapros 27 iyunya 2016) http://elibrary.lt/resursai/Uzsienio

[7] V. D. Koshur, K. V. Pushkarev, “Dualnye obobschenno-regressionnye neironnye seti dlya resheniya zadach globalnoi optimizatsii”, Nauchnaya sessiya NIYaU MIFI – 2010. XII Vserossiiskaya nauchno-tekhnicheskaya konferentsiya «Neiroinformatika–2010», Sbornik nauchnykh trudov. V 2-kh chastyakh, v. 2, NIYaU MIFI, M., 2010, 219–227

[8] A. S. Kochetkova, “Primenenie neironnykh setei dlya monitoringa bezopasnosti”, Vestnik Volgogradskogo gosudarstvennogo universiteta. Seriya 9. Issledovaniya molodykh uchenykh, 2007, no. 6, 163–166

[9] K. Kaneko, “Chaotic but Regular Posi-Nega Switch among Coded Attractors by Cluster-Size Variation”, Physical Review Letters, 63:3 (1989), 219–223 | DOI

[10] J. Russell, R. Cohn, Neural Cryptography, VSD, 2013

[11] M. I. Jordan, “Serial Order: A Parallel Distributed Processing Approach”, Advances in Psychology, 121 (1997), 471–495 | DOI

[12] M. Yu. Bugaevskii, V. I. Ponomarenko, Issledovanie povedeniya tsepi Chua, Izd-vo GosUNTs «Kolledzh», Saratov, 1998, 29 pp.

[13] I. Dalkiran, K. Danis, “Artificial Neural Network Based Chaotic Generator for Cryptology”, Turk J Elec Eng Comp Sci, 18:2 (2010), 225–240 | DOI

[14] N. Chervyakov, A. Evdokimov, A. Galushkin, Primenenie iskusstvennykh neironnykh setei i sistemy ostatochnykh klassov, Fizmatlit, M., 2012, 274 pp.

[15] StatSoft – Neironnye seti (zapros 7 iyunya 2016) http://www.statsoft.ru/home/textbook/modules/ stneunet.html