Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JCEM_2016_3_3_a3, author = {T. S. Ambrosova and N. D. Zylyarkina}, title = {Application of neural cryptography in solving problems of information security}, journal = {Journal of computational and engineering mathematics}, pages = {33--39}, publisher = {mathdoc}, volume = {3}, number = {3}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JCEM_2016_3_3_a3/} }
TY - JOUR AU - T. S. Ambrosova AU - N. D. Zylyarkina TI - Application of neural cryptography in solving problems of information security JO - Journal of computational and engineering mathematics PY - 2016 SP - 33 EP - 39 VL - 3 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JCEM_2016_3_3_a3/ LA - en ID - JCEM_2016_3_3_a3 ER -
%0 Journal Article %A T. S. Ambrosova %A N. D. Zylyarkina %T Application of neural cryptography in solving problems of information security %J Journal of computational and engineering mathematics %D 2016 %P 33-39 %V 3 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/JCEM_2016_3_3_a3/ %G en %F JCEM_2016_3_3_a3
T. S. Ambrosova; N. D. Zylyarkina. Application of neural cryptography in solving problems of information security. Journal of computational and engineering mathematics, Tome 3 (2016) no. 3, pp. 33-39. http://geodesic.mathdoc.fr/item/JCEM_2016_3_3_a3/
[1] A. A. Ezhov, S. A. Shumskii, Neirokompyuting i ego primenenie v ekonomike i biznese, MIFI, M., 1998, 222 pp.
[2] I. V. Zaentsev, Neironnye seti: osnovnye modeli, VGU, Voronezh, 1999, 76 pp.
[3] M. V. Burakov, Neironnye seti i neirokontrollery, Izd-vo GUAP, SPb., 2013, 283 pp.
[4] D. F. Specht, “The General Regression Neural Network – Rediscovered”, Neural Networks, 6:7 (1993), 1033–1034 | DOI
[5] E. M. Grubnik, V. M. Lavrushin, A. A. Uskov, “Modelirovanie sotsialno-ekonomicheskikh sistem i protsessov na osnove apparata obobschenno-regressionnykh neironnykh setei”, Fundamentalnye i prikladnye issledovaniya kooperativnogo sektora ekonomiki, 2011, no. 1, 58–63
[6] O. P. Soldatova, V. V. Semenov, “Primenenie neironnykh setei dlya resheniya zadach prognozirovaniya”, Elektronnyi nauchnyi zhurnal «ISSLEDOVANO V ROSSII», 9 (2006), 1270–1276 (zapros 27 iyunya 2016) http://elibrary.lt/resursai/Uzsienio
[7] V. D. Koshur, K. V. Pushkarev, “Dualnye obobschenno-regressionnye neironnye seti dlya resheniya zadach globalnoi optimizatsii”, Nauchnaya sessiya NIYaU MIFI – 2010. XII Vserossiiskaya nauchno-tekhnicheskaya konferentsiya «Neiroinformatika–2010», Sbornik nauchnykh trudov. V 2-kh chastyakh, v. 2, NIYaU MIFI, M., 2010, 219–227
[8] A. S. Kochetkova, “Primenenie neironnykh setei dlya monitoringa bezopasnosti”, Vestnik Volgogradskogo gosudarstvennogo universiteta. Seriya 9. Issledovaniya molodykh uchenykh, 2007, no. 6, 163–166
[9] K. Kaneko, “Chaotic but Regular Posi-Nega Switch among Coded Attractors by Cluster-Size Variation”, Physical Review Letters, 63:3 (1989), 219–223 | DOI
[10] J. Russell, R. Cohn, Neural Cryptography, VSD, 2013
[11] M. I. Jordan, “Serial Order: A Parallel Distributed Processing Approach”, Advances in Psychology, 121 (1997), 471–495 | DOI
[12] M. Yu. Bugaevskii, V. I. Ponomarenko, Issledovanie povedeniya tsepi Chua, Izd-vo GosUNTs «Kolledzh», Saratov, 1998, 29 pp.
[13] I. Dalkiran, K. Danis, “Artificial Neural Network Based Chaotic Generator for Cryptology”, Turk J Elec Eng Comp Sci, 18:2 (2010), 225–240 | DOI
[14] N. Chervyakov, A. Evdokimov, A. Galushkin, Primenenie iskusstvennykh neironnykh setei i sistemy ostatochnykh klassov, Fizmatlit, M., 2012, 274 pp.
[15] StatSoft – Neironnye seti (zapros 7 iyunya 2016) http://www.statsoft.ru/home/textbook/modules/ stneunet.html