Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JCEM_2016_3_3_a2, author = {M. A. Sagadeeva}, title = {Mathematical bases of optimal measurements theory in nonstationary case}, journal = {Journal of computational and engineering mathematics}, pages = {19--32}, publisher = {mathdoc}, volume = {3}, number = {3}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JCEM_2016_3_3_a2/} }
TY - JOUR AU - M. A. Sagadeeva TI - Mathematical bases of optimal measurements theory in nonstationary case JO - Journal of computational and engineering mathematics PY - 2016 SP - 19 EP - 32 VL - 3 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JCEM_2016_3_3_a2/ LA - en ID - JCEM_2016_3_3_a2 ER -
M. A. Sagadeeva. Mathematical bases of optimal measurements theory in nonstationary case. Journal of computational and engineering mathematics, Tome 3 (2016) no. 3, pp. 19-32. http://geodesic.mathdoc.fr/item/JCEM_2016_3_3_a2/
[1] V. A. Granovskii, Dinamicheskie izmereniya. Osnovy metrologicheskogo obespecheniya, Energoatomizdat, L., 1984, 224 pp.
[2] A. L. Shestakov, Metody teorii avtomaticheskogo upravleniya v dinamicheskikh izmereniyakh, Izd. tsentr YuUrGU, Chelyabinsk, 2013, 257 pp.
[3] G. A. Sviridyuk, A. A. Efremov, “Optimalnoe upravlenie odnim klassom lineinykh vyrozhdennykh uravnenii”, Doklady Akademii nauk, 246:3 (1999), 323–325 | MR
[4] A. L. Shestakov, G. A. Sviridyuk, “Novyi podkhod k izmereniyu dinamicheski iskazhennykh signalov”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 2010, no. 5, 116–120 | Zbl
[5] A. V. Keller, “Chislennoe reshenie zadachi optimalnogo upravleniya vyrozhdennoi lineinoi sistemoi uravnenii s nachalnymi usloviyami Shouoltera–Sidorova”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 2008, no. 27 (127), 50–56 | Zbl
[6] A. V. Keller, Chislennoe issledovanie zadach optimalnogo upravleniya dlya modelei leontevskogo tipa, diss. \ldots dokt. fiz.-matem. nauk, Chelyabinsk, 2011, 237 pp.
[7] A. L. Shestakov, A. V. Keller, E. I. Nazarova, “Numerical Solution of the Optimal Measurement Problem”, Automation and Remote Control, 73:1 (2012), 97–104 | DOI | MR | Zbl
[8] A. L. Shestakov, A. V. Keller, G. A. Sviridyuk, “The theory of optimal measurements”, J. Comp. Eng. Math., 1:1 (2014), 3–16 | Zbl
[9] A. L. Shestakov, G. A. Sviridyuk, Yu. V. Khudyakov, “Dinamicheskie izmereniya v prostranstvakh «shumov» usloviyami Shouoltera–Sidorova”, Vestnik YuUrGU. Seriya: Kompyuternye tekhnologii, upravlenie, radioelektronika, 13:2 (2013), 4–11
[10] G. A. Sviridyuk, N. A. Manakova, “Dinamicheskie modeli sobolevskogo tipa s usloviem Shouoltera–Sidorova i additivnymi «shumami»”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 7:1 (2014), 90–103 | DOI | Zbl
[11] A. V. Keller, M. A. Sagadeeva, “Chislennoe reshenie zadach optimalnogo i zhestkogo upravleniya dlya odnoi nestatsionarnoi sistemy leontevskogo tipa”, Nauchnye vedomosti Belgorodskogo gosudarstvennogo universiteta. Seriya: Matematika. Fizika, 32:19 (2013), 57–66
[12] M. A. Sagadeeva, G. A. Sviridyuk, “The Nonautonomous Linear Oskolkov Model on a Geometrical Graph: the Stability of Solutions and Optimal Control Problem”, Semigroups of Operators – Theory and Applications, Proc. Int. Conference (Bedlewo, Poland, 2013, October 6–10), Springer Proceedings in Mathematics and Statistics, 113, eds. J. Banasiak, A. Bobrowski, M. Lachowicz, Springer International Publishing, 2015, 257–271 | DOI | MR | Zbl
[13] A. L. Shestakov, G. A. Sviridyuk, M. A. Sagadeeva, “Reconstruction of a Dynamically Distorted Signal with Respect to the Measure Tranducer Degradation”, Applied Mathematical Sciences, 8:41–44 (2014), 2125–2130 | DOI
[14] A. L. Shestakov, A. V. Keller, M. A. Sagadeeva, “Numerical Algorithm for Reconstruction of a Dynamically Distorted Signal with Inertia and Multiplicative Effect”, Applied Mathematical Sciences, 8:113–116 (2014), 5731–5736 | DOI
[15] A. A. Belov, A. P. Kurdyukov, Deskriptornye sistemy i zadachi upravleniya, Fizmatlit, M., 2015, 300 pp.
[16] G. A. Sviridyuk, T. G. Sukacheva, “Phase spaces of a class of operator semilinear equations of Sobolev type”, Differ. Equ., 26:2 (1990), 188–195 | MR | Zbl
[17] G. A. Sviridyuk, T. G. Sukacheva, “Rapid-Slow Dynamics of Viscoelastic Media”, Soviet Mathematics Doklads, 40:2 (1990), 376–379 | MR | Zbl
[18] G. V. Demidenko, S. V. Uspenskii, Partial Differential Equations and Systems not Solvable with Respect to the Highest-order Derivative, Marcel Dekker Inc., New York-Basel-Hong Kong, 2003, xvi+490 pp. | MR | Zbl
[19] N. Sidorov, B. Loginov, A. Sinithyn and M. Falaleev, Lyapunov–Shmidt Methods in Nonlinear Analysis and Applications, Kluwer Academic Publishers, Dordrecht, Boston, London, 2002, xx+548 pp. | DOI | MR
[20] G. A. Sviridyuk, V. E. Fedorov, Linear Sobolev Type Equations and Degenerate Semigroups of Operators, VSP, Utrecht–Boston, 2003, viii+216 pp. | MR | Zbl
[21] A. A. Zamyshlyaeva, Lineinye uravneniya sobolevskogo tipa vysokogo poryadka, Izd. tsentr YuUrGU, Chelyabinsk, 2012, 107 pp. | MR
[22] N. A. Manakova, Zadachi optimalnogo upravleniya dlya polulineinykh uravnenii sobolevskogo tipa, Izd. tsentr YuUrGU, Chelyabinsk, 2012, 88 pp. | MR
[23] M. A. Sagadeeva, Dikhotomii reshenii lineinykh uravnenii sobolevskogo tipa, Izd. tsentr YuUrGU, Chelyabinsk, 2012, 139 pp. | MR
[24] O. P. Matveeva, T. G. Sukacheva, Matematicheskie modeli vyazkouprugikh neszhimaemykh zhidkostei nenulevogo poryadka, Izd. tsentr YuUrGU, Chelyabinsk, 2014, 101 pp.
[25] S. A. Zagrebina, M. A. Sagadeeva, Ustoichivye i neustoichivye mnogoobraziya reshenii polulineinykh uravnenii sobolevskogo tipa, Izd. tsentr YuUrGU, Chelyabinsk, 2016, 121 pp.
[26] A. V. Keller, Dzh. K. Al-Delfi, “Golomorfnye vyrozhdennye gruppy operatorov v kvazibanakhovykh prostranstvakh”, Vestn. Yuzhno-Ur. un-ta. Ser. Matem. Mekh. Fiz., 7:1 (2015), 20–27 | Zbl
[27] A. A. Zamyshlyaeva, D. K. T. Al-Isawi, “On some properties of solutions to one class of evolution Sobolev type mathematical models in quasi-Sobolev spaces”, Vestnik YuUrGU. Ser. Mat. Model. Progr., 8:4 (2015), 113–119 | DOI | Zbl
[28] M. A. Sagadeeva, F. L. Khasan, “Ogranichennye resheniya modeli Barenblatta–Zheltova–Kochinoi v kvazisobolevykh prostranstvakh”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 8:4 (2015), 138–144 | DOI | Zbl
[29] A. Favini, G. A. Sviridyuk, A. A. Zamyshlyaeva, “One Class of Sobolev Type Equations of Higher Order with Additive “White Noise””, Communications on Pure and Applied Analysis, 15:1 (2016), 185–196 | DOI | MR | Zbl
[30] A. Favini, G. A. Sviridyuk, N. A. Manakova, “Linear Sobolev Type Equations with Relatively p-Sectorial Operators in Space of “Noises””, Abstract and Applied Analysis, 2015 (2015), 697410, 8 pp. | DOI | MR | Zbl
[31] A. L. Shestakov, G. A. Sviridyuk, Yu. V. Khudyakov, “Dynamical Measurements in the View of the Group Operators Theory”, Semigroups of Operators – Theory and Applications, Proc. Int. Conference (Bedlewo, Poland, 2013, October 6–10), Springer Proceedings in Mathematics and Statistics, 113, eds. J. Banasiak, A. Bobrowski, M. Lachowicz, Springer International Publishing, 2015, 273–286 | DOI | MR | Zbl
[32] M. A. Sagadeeva, “Vyrozhdennye potoki razreshayuschikh operatorov dlya nestatsionarnykh uravnenii sobolevskogo tipa”, Vestn. Yuzhno-Ur. un-ta. Ser. Matem. Mekh. Fiz., 9:1 (2017) (to appear)
[33] A. D. Ioffe, V. M. Tikhomirov, Teoriya ekstremalnykh zadach, Nauka, M., 1974, 480 pp. | MR