Mathematical modeling of oregonator with a diffusion type communication
Journal of computational and engineering mathematics, Tome 3 (2016) no. 2, pp. 48-56

Voir la notice de l'article provenant de la source Math-Net.Ru

We presented a mathematical model of the Belousov–Zhabotinsky reaction for Field–Noyes mechanism, which is called oregonator, taking into account the diffusion of components. A range of stoichiometric coefficient changes, which corresponds to a stationary state oregonator, is found. We study a diffusion instability and two types of unstable modes, as well as the points of oregonator bifurcation.
Keywords: Field–Noyes model, oregonator, diffusion instability, bifurcation point.
@article{JCEM_2016_3_2_a5,
     author = {L. A. Prokudina},
     title = {Mathematical modeling of oregonator with a diffusion type communication},
     journal = {Journal of computational and engineering mathematics},
     pages = {48--56},
     publisher = {mathdoc},
     volume = {3},
     number = {2},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JCEM_2016_3_2_a5/}
}
TY  - JOUR
AU  - L. A. Prokudina
TI  - Mathematical modeling of oregonator with a diffusion type communication
JO  - Journal of computational and engineering mathematics
PY  - 2016
SP  - 48
EP  - 56
VL  - 3
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCEM_2016_3_2_a5/
LA  - en
ID  - JCEM_2016_3_2_a5
ER  - 
%0 Journal Article
%A L. A. Prokudina
%T Mathematical modeling of oregonator with a diffusion type communication
%J Journal of computational and engineering mathematics
%D 2016
%P 48-56
%V 3
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCEM_2016_3_2_a5/
%G en
%F JCEM_2016_3_2_a5
L. A. Prokudina. Mathematical modeling of oregonator with a diffusion type communication. Journal of computational and engineering mathematics, Tome 3 (2016) no. 2, pp. 48-56. http://geodesic.mathdoc.fr/item/JCEM_2016_3_2_a5/