On existence of solutions to stochastic differential equations with osmotic velocities
Journal of computational and engineering mathematics, Tome 3 (2016) no. 2, pp. 32-39.

Voir la notice de l'article provenant de la source Math-Net.Ru

The notion of mean derivatives was introduced by E. Nelson in 60-th years of XX century and at the moment there are a lot of mathematical models of physical processes constructed in terms of those derivatives. The paper is devoted to investigation of stochastic differential equations with osmotic velocities, i.e., with Nelson's antisymmetric mean derivatives. Since the osmotic velocities of stochastic processes shows "how fast the randomness grows", such research is important for investigation of models of physical processes that take into account stochastic properties. An existence of solution theorem for those equations is obtained.
Keywords: mean derivatives, equations with osmotic velocities, existence of solutions.
@article{JCEM_2016_3_2_a3,
     author = {Yu. E. Gliklikh and K. A. Samsonova},
     title = {On existence of solutions to stochastic differential equations with osmotic velocities},
     journal = {Journal of computational and engineering mathematics},
     pages = {32--39},
     publisher = {mathdoc},
     volume = {3},
     number = {2},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JCEM_2016_3_2_a3/}
}
TY  - JOUR
AU  - Yu. E. Gliklikh
AU  - K. A. Samsonova
TI  - On existence of solutions to stochastic differential equations with osmotic velocities
JO  - Journal of computational and engineering mathematics
PY  - 2016
SP  - 32
EP  - 39
VL  - 3
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCEM_2016_3_2_a3/
LA  - en
ID  - JCEM_2016_3_2_a3
ER  - 
%0 Journal Article
%A Yu. E. Gliklikh
%A K. A. Samsonova
%T On existence of solutions to stochastic differential equations with osmotic velocities
%J Journal of computational and engineering mathematics
%D 2016
%P 32-39
%V 3
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCEM_2016_3_2_a3/
%G en
%F JCEM_2016_3_2_a3
Yu. E. Gliklikh; K. A. Samsonova. On existence of solutions to stochastic differential equations with osmotic velocities. Journal of computational and engineering mathematics, Tome 3 (2016) no. 2, pp. 32-39. http://geodesic.mathdoc.fr/item/JCEM_2016_3_2_a3/

[1] E. Nelson, “Derivation of the Schrödinger Equation from Newtonian Mechanics”, Physical Review, 150:4 (1966), 1079-1085 | DOI

[2] E. Nelson, Dynamical Theory of Brownian Motion, Princeton University Press, Princeton, 1967 | MR

[3] E. Nelson, Quantum Fluctuations, Princeton University Press, Princeton, 1985 | MR | Zbl

[4] K. R. Parthasarathy, Introduction to Probability and Measure, Springer, New York, 1978 | MR

[5] Yu. E. Gliklikh, Global and Stochastic Analysis with Applications to Mathematical Physics, Springer–Verlag, London, 2011 | DOI | MR | Zbl

[6] J. Cresson, S. Darses, “Stochastic Embedding of Dynamical Systems”, Journal of Mathematical Physics, 48:7 (2007), 072703-1–072303-54 | DOI | MR

[7] Yu. E. Gliklikh, E. Yu. Mashkov, “Stochastic Leontieff type equations and mean derivatives of stochastic processes”, Vestnik YuUrGU. Ser. Mat. Model. Progr., 6:2 (2013), 25–39 | Zbl

[8] S. V. Azarina, Yu. E. Gliklikh, “Differential inclusions with mean derivatives”, Dynamic Systems and Applications, 16:1 (2007), 49-71 | MR | Zbl

[9] I. I. Gihman, A. V. Skorohod, Theory of Stochastic Processes, v. 3, Springer–Verlag, New York, 1979 | DOI | Zbl

[10] C. Стернберг, Лекции по дифференциальной геометрии, Мир, Москва, 1970 | MR | MR | Zbl

[11] S. V. Azarina, Yu. E. Gliklikh, “O suschestvovanii reshenii stokhasticheskikh differentsialnykh uravnenii s tekuschimi skorostyami”, Vestnik Yuzhno-Uralskogo gosudarstvennogo universiteta. Seriya: Matematicheskoe modelirovanie i programmirovanie, 8:4 (2015), 100-106 | DOI | MR | Zbl