Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JCEM_2016_3_2_a2, author = {E. A. Bogatyreva}, title = {The convergence of approximate solutions of the {Cauchy} problem for the model of quasi-steady process in conducting nondispersive medium with relaxation}, journal = {Journal of computational and engineering mathematics}, pages = {25--31}, publisher = {mathdoc}, volume = {3}, number = {2}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JCEM_2016_3_2_a2/} }
TY - JOUR AU - E. A. Bogatyreva TI - The convergence of approximate solutions of the Cauchy problem for the model of quasi-steady process in conducting nondispersive medium with relaxation JO - Journal of computational and engineering mathematics PY - 2016 SP - 25 EP - 31 VL - 3 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JCEM_2016_3_2_a2/ LA - en ID - JCEM_2016_3_2_a2 ER -
%0 Journal Article %A E. A. Bogatyreva %T The convergence of approximate solutions of the Cauchy problem for the model of quasi-steady process in conducting nondispersive medium with relaxation %J Journal of computational and engineering mathematics %D 2016 %P 25-31 %V 3 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/JCEM_2016_3_2_a2/ %G en %F JCEM_2016_3_2_a2
E. A. Bogatyreva. The convergence of approximate solutions of the Cauchy problem for the model of quasi-steady process in conducting nondispersive medium with relaxation. Journal of computational and engineering mathematics, Tome 3 (2016) no. 2, pp. 25-31. http://geodesic.mathdoc.fr/item/JCEM_2016_3_2_a2/
[1] M. O. Korpusov, Yu. D. Pletner, A. G. Sveshnikov, “On quasi-steady processes in conducting nondispersive media”, Comput. Math. Math. Phys., 40:8 (2000), 1188–1199 | MR | Zbl
[2] M. O. Korpusov, “Blow-up of a solution of a pseudoparabolic equation with the time derivative of a nonlinear elliptic operator”, Comput. Math. Math. Phys., 42:12 (2002), 1717–1724 | MR | Zbl
[3] A. G. Sveshnikov, A. B. Alshin, M. O. Korpusov, Nelineinyi funktsionalnyi analiz i ego prilozheniya k uravneniyam v chastnykh proizvodnykh, Nauch. mir, Moskva, 2008, 399 pp.
[4] E. A. Bogatyreva, “Numerical modeling of quasi-steady process in conducting nondispersive medium with relaxation”, J. Comp. Eng. Math., 2:1 (2015), 45–51 | DOI | Zbl
[5] A. B. Alshin, E. A. Alshina, N. N. Kalitkin, A. B. Koryagina, “Rosenbrock schemes with complex coefficients for stiff and differential algebraic systems”, Comput. Math. Math. Phys., 46:8 (2006), 1320–1340 | DOI | MR