Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JCEM_2016_3_2_a0, author = {A. L. Kartashev and A. S. Pantileev}, title = {The use of mathematical modeling to determine the need configuration of unmanned aircraft having a variable structure in flight}, journal = {Journal of computational and engineering mathematics}, pages = {3--13}, publisher = {mathdoc}, volume = {3}, number = {2}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JCEM_2016_3_2_a0/} }
TY - JOUR AU - A. L. Kartashev AU - A. S. Pantileev TI - The use of mathematical modeling to determine the need configuration of unmanned aircraft having a variable structure in flight JO - Journal of computational and engineering mathematics PY - 2016 SP - 3 EP - 13 VL - 3 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JCEM_2016_3_2_a0/ LA - en ID - JCEM_2016_3_2_a0 ER -
%0 Journal Article %A A. L. Kartashev %A A. S. Pantileev %T The use of mathematical modeling to determine the need configuration of unmanned aircraft having a variable structure in flight %J Journal of computational and engineering mathematics %D 2016 %P 3-13 %V 3 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/JCEM_2016_3_2_a0/ %G en %F JCEM_2016_3_2_a0
A. L. Kartashev; A. S. Pantileev. The use of mathematical modeling to determine the need configuration of unmanned aircraft having a variable structure in flight. Journal of computational and engineering mathematics, Tome 3 (2016) no. 2, pp. 3-13. http://geodesic.mathdoc.fr/item/JCEM_2016_3_2_a0/
[1] V. V. Vislenyov, D. V. Kuzmenko, Aviation Theory, Gosudarstvennoe Voennoe Izdatelstvo Narkomata Oboronyi Soyuza SSR Publ., Moscow, 1939, 384 pp.
[2] W. J. Crowther, “Perched Landing and Takeoff for Fixed Wing UAVs”, Unmanned Vehicles (UV) for Aerial, Ground and Naval Military Operations (October 9 – 13, Ankara), Ankara, 2000, 19-1–19-9
[3] E. Rick, Cory. Supermaneuverable Perching, PhD Dissertation, Massachusetts, 2010
[4] A. G. Sim, Flight Characteristics of a Modified Schweizer SGS 1-36 Sailplane at Low and Very High Angles of Attack, NASA TP-3022, H-1563, NAS 1.60:3022, Washington, D.C., 1990, iii+44 pp., 91N10079
[5] O. Lilienthal, Bird Flight as the Basis for the Art of Flying, Institut Kompyuternyih Issledovaniy Publ., M.–Izhevsk, 2002, 232 pp.
[6] A. S. Pantileev, “Statement of the Problem of Optimum Landing Approach of the Pilotless Flying Machine with Structure Changed in Flight”, Bulletin of the South Ural State University. Series: Computer Technologies, Automatic Control and Radioelectronics, 12:22 (198) (2010), 43–46
[7] P. Menon, G. Sweriduk, E. Ohlmeyer, D. Malyevac, “Integrated Guidance and Control of Moving Mass Actuated Kinetic Warheads”, Journal of Guidance, Control, and Dynamics, 27:1 (2004), 118–127 | DOI
[8] C. A. Woolsey, N. E. Leonard, “Moving Mass Control for Underwater Vehicles”, Proceedings of the American Control Conference, 2002, 2824–2829 | DOI
[9] E. J. Haug, Computer Aided Kinematics and Dynamics of Mechanical Systems, v. 1, Basic Methods, Allyn and Bacon, Boston, 1989, 511 pp.
[10] W. Schiehlen, Multibody System Handbook, Springer-Verlag, Berlin–Heidelberg, 1990 | DOI
[11] J. Wittenburg, Dynamics of Systems of Rigid Bodies, Mir Publ., M., 1980, 294 pp. | MR
[12] G. S. Byushgens, R. V. Studnev, The Dynamics of the Aerial Vehicle. Spatial Movement, Mechanical Engineering Publ., M., 1983, 320 pp.
[13] I. V. Ostoslavsky, I. V. Strazheva, Flight Dynamics. The Trajectories of Aircrafts, Mechanical Engineering Publ., M., 1969, 502 pp.