The use of mathematical modeling to determine the need configuration of unmanned aircraft having a variable structure in flight
Journal of computational and engineering mathematics, Tome 3 (2016) no. 2, pp. 3-13.

Voir la notice de l'article provenant de la source Math-Net.Ru

A balancer control in conjunction with the classical aerodynamic controls will significantly reduce the landing distance. We find the equations of motion both taking into account a movable load and without it, for unmanned aerial vehicle having a variable structure in flight.
Keywords: differential equations of motion, variable structure, unmanned aerial vehicle.
@article{JCEM_2016_3_2_a0,
     author = {A. L. Kartashev and A. S. Pantileev},
     title = {The use of mathematical modeling to determine the need configuration of unmanned aircraft having a variable structure in flight},
     journal = {Journal of computational and engineering mathematics},
     pages = {3--13},
     publisher = {mathdoc},
     volume = {3},
     number = {2},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JCEM_2016_3_2_a0/}
}
TY  - JOUR
AU  - A. L. Kartashev
AU  - A. S. Pantileev
TI  - The use of mathematical modeling to determine the need configuration of unmanned aircraft having a variable structure in flight
JO  - Journal of computational and engineering mathematics
PY  - 2016
SP  - 3
EP  - 13
VL  - 3
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCEM_2016_3_2_a0/
LA  - en
ID  - JCEM_2016_3_2_a0
ER  - 
%0 Journal Article
%A A. L. Kartashev
%A A. S. Pantileev
%T The use of mathematical modeling to determine the need configuration of unmanned aircraft having a variable structure in flight
%J Journal of computational and engineering mathematics
%D 2016
%P 3-13
%V 3
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCEM_2016_3_2_a0/
%G en
%F JCEM_2016_3_2_a0
A. L. Kartashev; A. S. Pantileev. The use of mathematical modeling to determine the need configuration of unmanned aircraft having a variable structure in flight. Journal of computational and engineering mathematics, Tome 3 (2016) no. 2, pp. 3-13. http://geodesic.mathdoc.fr/item/JCEM_2016_3_2_a0/

[1] V. V. Vislenyov, D. V. Kuzmenko, Aviation Theory, Gosudarstvennoe Voennoe Izdatelstvo Narkomata Oboronyi Soyuza SSR Publ., Moscow, 1939, 384 pp.

[2] W. J. Crowther, “Perched Landing and Takeoff for Fixed Wing UAVs”, Unmanned Vehicles (UV) for Aerial, Ground and Naval Military Operations (October 9 – 13, Ankara), Ankara, 2000, 19-1–19-9

[3] E. Rick, Cory. Supermaneuverable Perching, PhD Dissertation, Massachusetts, 2010

[4] A. G. Sim, Flight Characteristics of a Modified Schweizer SGS 1-36 Sailplane at Low and Very High Angles of Attack, NASA TP-3022, H-1563, NAS 1.60:3022, Washington, D.C., 1990, iii+44 pp., 91N10079

[5] O. Lilienthal, Bird Flight as the Basis for the Art of Flying, Institut Kompyuternyih Issledovaniy Publ., M.–Izhevsk, 2002, 232 pp.

[6] A. S. Pantileev, “Statement of the Problem of Optimum Landing Approach of the Pilotless Flying Machine with Structure Changed in Flight”, Bulletin of the South Ural State University. Series: Computer Technologies, Automatic Control and Radioelectronics, 12:22 (198) (2010), 43–46

[7] P. Menon, G. Sweriduk, E. Ohlmeyer, D. Malyevac, “Integrated Guidance and Control of Moving Mass Actuated Kinetic Warheads”, Journal of Guidance, Control, and Dynamics, 27:1 (2004), 118–127 | DOI

[8] C. A. Woolsey, N. E. Leonard, “Moving Mass Control for Underwater Vehicles”, Proceedings of the American Control Conference, 2002, 2824–2829 | DOI

[9] E. J. Haug, Computer Aided Kinematics and Dynamics of Mechanical Systems, v. 1, Basic Methods, Allyn and Bacon, Boston, 1989, 511 pp.

[10] W. Schiehlen, Multibody System Handbook, Springer-Verlag, Berlin–Heidelberg, 1990 | DOI

[11] J. Wittenburg, Dynamics of Systems of Rigid Bodies, Mir Publ., M., 1980, 294 pp. | MR

[12] G. S. Byushgens, R. V. Studnev, The Dynamics of the Aerial Vehicle. Spatial Movement, Mechanical Engineering Publ., M., 1983, 320 pp.

[13] I. V. Ostoslavsky, I. V. Strazheva, Flight Dynamics. The Trajectories of Aircrafts, Mechanical Engineering Publ., M., 1969, 502 pp.