The Barenblatt – Zheltov – Kochina model with additive white noise in quasi-Sobolev spaces
Journal of computational and engineering mathematics, Tome 3 (2016) no. 1, pp. 61-67.

Voir la notice de l'article provenant de la source Math-Net.Ru

In order to carry over the theory of linear stochastic Sobolev-type equations to quasi-Banach spaces, we construct a space of differentiable quasi-Sobolev "noises" and establish the existence and uniqueness of a classical solution to the Showalter – Sidorov problem for a stochastic Sobolev-type equation with a relatively $p$-bounded operator. Basing on the abstract results, we study the Barenblatt – Zheltov – Kochina stochastic model with the Showalter – Sidorov initial condition in quasi-Sobolev spaces with an external action in the form of "white noise".
Keywords: Sobolev-type equations; Wiener process; Nelson – Gliklikh derivative; white noise; quasi-Sobolev spaces; Barenblatt – Zheltov – Kochina stochastic equation.
@article{JCEM_2016_3_1_a6,
     author = {G. A. Sviridyuk and N. A. Manakova},
     title = {The {Barenblatt} {\textendash} {Zheltov} {\textendash} {Kochina} model with additive white noise in {quasi-Sobolev} spaces},
     journal = {Journal of computational and engineering mathematics},
     pages = {61--67},
     publisher = {mathdoc},
     volume = {3},
     number = {1},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JCEM_2016_3_1_a6/}
}
TY  - JOUR
AU  - G. A. Sviridyuk
AU  - N. A. Manakova
TI  - The Barenblatt – Zheltov – Kochina model with additive white noise in quasi-Sobolev spaces
JO  - Journal of computational and engineering mathematics
PY  - 2016
SP  - 61
EP  - 67
VL  - 3
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCEM_2016_3_1_a6/
LA  - en
ID  - JCEM_2016_3_1_a6
ER  - 
%0 Journal Article
%A G. A. Sviridyuk
%A N. A. Manakova
%T The Barenblatt – Zheltov – Kochina model with additive white noise in quasi-Sobolev spaces
%J Journal of computational and engineering mathematics
%D 2016
%P 61-67
%V 3
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCEM_2016_3_1_a6/
%G en
%F JCEM_2016_3_1_a6
G. A. Sviridyuk; N. A. Manakova. The Barenblatt – Zheltov – Kochina model with additive white noise in quasi-Sobolev spaces. Journal of computational and engineering mathematics, Tome 3 (2016) no. 1, pp. 61-67. http://geodesic.mathdoc.fr/item/JCEM_2016_3_1_a6/

[1] J. Bergh, J. Löfström, Interpolation Spaces. An Introduction, Springer-Verlag, Berlin, Heidelberg, N.Y., 1978 | MR | MR

[2] A. V. Keller, D. K. Al-Delfi, “Golomorfnye vyrozhdennye gruppy operatorov v kvazibanakhovykh prostranstvakh”, Vestnik YuUrGU. Seriya: Matematika. Mekhanika. Fizika, 7:1 (2015), 20-27 | Zbl

[3] A. L. Shestakov, G. A. Sviridyuk, “On the Measurement of the “White Noise””, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 13:27(286) (2012), 99-108 | Zbl

[4] G. A. Sviridyuk, N. A. Manakova, “Dinamicheskie modeli sobolevskogo tipa s usloviem Shouoltera – Sidorova i additivnymi “shumami””, Vestnik YuUrGU. Seriya:Matematicheskoe modelirovanie i programmirovanie, 7:1 (2014), 90-103 pp. | Zbl

[5] G. A. Sviridyuk, “K obschei teorii polugrupp operatorov”, Uspekhi matematicheskikh nauk, 49:4 (1994), 47-74 | MR | Zbl

[6] A. A. Zamyshlyaeva, “Stokhasticheskie nepolnye lineinye uravneniya sobolevskogo tipa vysokogo poryadka s additivnym belym shumom”, Vestnik YuUrGU. Seriya: Matematicheskoe modelirovanie i programmirovanie, 14:40(299) (2012), 73-82 | MR | Zbl

[7] S. A. Zagrebina, E. A. Soldatova, “Lineinye uravneniya sobolevskogo tipa s otnositelno p-ogranichennymi operatorami i additivnym belym shumom”, Izvestiya Irkutskogo gosudarstvennogo universiteta. Seriya: Matematika, 6:1 (2013), 20-34 | Zbl